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We must be ignorant of much, if we would know anything.

Cardinal John Newman (1801–1890).

Preface

T
HIS IS A BOOK on the fluid dynamics of the atmosphere and ocean, with an emphasis
on the fundamentals and on the large-scale circulation, the latter meaning flows
from the scale of the first deformation radius (a few tens of kilometres in the ocean,

several hundred kilometres in the atmosphere) to the global scale. The book is primarily a
textbook; it is designed to be accessible to students and could be used as a text for graduate
courses. It may be also useful as an introduction to the field for scientists in other areas and
as a reference for researchers in the field, and some aspects of the book have the flavour of
a research monograph.

Atmospheric and oceanic fluid dynamics (AOFD) is fascinating field, and simultaneously
both pure and applied. It is a pure field because it is intimately tied to some of the most
fundamental and unsolved problems in fluid dynamics — problems in turbulence and wave–
mean flow interaction, problems in chaos and predictability, and problems in the general
circulation itself. Yet it is applied because the climate and weather so profoundly affect the
human condition, and so a great deal of effort goes into making predictions — indeed the
practice of weather forecasting is a remarkable example of a successful applied science, in
spite of the natural limitations to predictability that are now reasonably well understood.
The field is plainly important, for we live in the atmosphere and the ocean covers about
two-thirds of the Earth. It is also very broad, encompassing such diverse topics as the
general circulation, gyres, boundary layers, waves, convection and turbulence. My goal in
this book is present a coherent selection of these topics, concentrating on the foundations
but without shying away from the boundaries of active areas of research — for a book that
limits itself to what is absolutely settled would, I think, be rather dry, a quality best reserved
for martinis and humour.

AOFD is closely related to the field of geophysical fluid dynamics (GFD). The latter can
be, depending on one’s point of view, both a larger and a smaller field than the former. It
is larger because GFD, in its broadest meaning, includes not just the fluid dynamics of the
Earth’s atmosphere and ocean, but also the fluid dynamics of such things as the Earth’s
interior, volcanoes, lava flows and planetary atmospheres; it is the fluid mechanics of all

xix



Part I

FUNDAMENTALS OF GEOPHYSICAL

FLUID DYNAMICS





If a body is moving in any direction, there is a force, arising from the
Earth’s rotation, which always deflects it to the right in the northern hemi-
sphere, and to the left in the southern.

William Ferrel, The influence of the Earth’s rotation upon the relative motion of
bodies near its surface, 1858.

CHAPTER

TWO

Effects of Rotation and Stratification

T
HE ATMOSPHERE AND OCEAN are shallow layers of fluid on a sphere in that their thickness
or depth is much less than their horizontal extent. Furthermore, their motion is
strongly influenced by two effects: rotation and stratification, the latter meaning

that there is a mean vertical gradient of (potential) density that is often large compared
with the horizontal gradient. Here we consider how the equations of motion are affected by
these effects. First, we consider some elementary effects of rotation on a fluid and derive the
Coriolis and centrifugal forces, and then we write down the equations of motion appropriate
for motion on a sphere. Then we discuss some approximations to the equations of motion
that are appropriate for large-scale flow in the ocean and atmosphere, in particular the
hydrostatic and geostrophic approximations. Following this we discuss gravity waves, a
particular kind of wave motion that is enabled by the presence of stratification, and finally
we talk about how rotation leads to the production of certain types of boundary layers —
Ekman layers — in rotating fluids.

2.1 THE EQUATIONS OF MOTION IN A ROTATING FRAME OF REFERENCE

Newton’s second law of motion, that the acceleration on a body is proportional to the
imposed force divided by the body’s mass, applies in so-called inertial frames of reference.
The Earth rotates with a period of almost 24 hours (23h 56m) relative to the distant stars,
and the surface of the Earth manifestly is not, in that sense, an inertial frame. Nevertheless,
because the surface of the Earth is moving (in fact at speeds of up to a few hundreds of
metres per second) it is very convenient to describe the flow relative to the Earth’s surface,
rather than in some inertial frame. This necessitates recasting the equations into a form
that is appropriate for a rotating frame of reference, and that is the subject of this section.

51



52 Chapter 2. Effects of Rotation and Stratification

Fig. 2.1 A vector C rotating at
an angular velocity Ω. It ap-
pears to be a constant vector in
the rotating frame, whereas in
the inertial frame it evolves ac-
cording to (dC/dt)I = Ω× C.

λ

Ω

C⊥

m

Ω× C

C

ϑ

2.1.1 Rate of change of a vector

Consider first a vector C of constant length rotating relative to an inertial frame at a con-
stant angular velocity Ω. Then, in a frame rotating with that same angular velocity it ap-
pears stationary and constant. If in a small interval of time δt the vector C rotates through
a small angle δλ then the change in C , as perceived in the inertial frame, is given by (see
Fig. 2.1)

δC = |C| cosϑδλm, (2.1)

where the vectorm is the unit vector in the direction of change of C , which is perpendicular
to both C and Ω. But the rate of change of the angle λ is just, by definition, the angular
velocity so that δλ = |Ω|δt and

δC = |C||Ω| sin ϑ̂mδt = Ω× C δt. (2.2)

using the definition of the vector cross product, where ϑ̂ = (π/2−ϑ) is the angle between
Ω and C . Thus (

dC
dt

)
I
= Ω× C, (2.3)

where the left-hand side is the rate of change of C as perceived in the inertial frame.
Now consider a vector B that changes in the inertial frame. In a small time δt the change

in B as seen in the rotating frame is related to the change seen in the inertial frame by

(δB)I = (δB)R + (δB)rot, (2.4)

where the terms are, respectively, the change seen in the inertial frame, the change due to
the vector itself changing as measured in the rotating frame, and the change due to the
rotation. Using (2.2) (δB)rot = Ω × Bδt, and so the rates of change of the vector B in the
inertial and rotating frames are related by

(
dB
dt

)
I
=
(

dB
dt

)
R
+Ω× B . (2.5)



2.1 Equations in a Rotating Frame 53

This relation applies to a vector B that, as measured at any one time, is the same in both
inertial and rotating frames.

2.1.2 Velocity and acceleration in a rotating frame

The velocity of a body is not measured to be the same in the inertial and rotating frames,
so care must be taken when applying (2.5) to velocity. First apply (2.5) to r, the position of
a particle to obtain (

dr
dt

)
I
=
(

dr
dt

)
R
+Ω× r (2.6)

or

vI = vR +Ω× r. (2.7)

We refer to vR and vI as the relative and inertial velocity, respectively, and (2.7) relates the
two. Apply (2.5) again, this time to the velocity vR to give

(
dvR
dt

)
I
=
(

dvR
dt

)
R
+Ω× vR, (2.8)

or, using (2.7) (
d

dt
(vI −Ω× r)

)
I
=
(

dvR
dt

)
R
+Ω× vR, (2.9)

or (
dvI
dt

)
I
=
(

dvR
dt

)
R
+Ω× vR +

dΩ
dt

× r +Ω×
(

dr
dt

)
I
. (2.10)

Then, noting that (
dr
dt

)
I
=
(

dr
dt

)
R
+Ω× r = (vR +Ω× r), (2.11)

and assuming that the rate of rotation is constant, (2.10) becomes

(
dvR
dt

)
R
=
(

dvI
dt

)
I
− 2Ω× vR −Ω× (Ω× r). (2.12)

This equation may be interpreted as follows. The term on the left-hand side is the rate
of change of the relative velocity as measured in the rotating frame. The first term on the
right-hand side is the rate of change of the inertial velocity as measured in the inertial frame
(or, loosely, the inertial acceleration). Thus, by Newton’s second law, it is equal to the force
on a fluid parcel divided by its mass. The second and third terms on the right-hand side
(including the minus signs) are the Coriolis force and the centrifugal force per unit mass.
Neither of these are true forces — they may be thought of as quasi-forces (i.e., ‘as if’ forces);
that is, when a body is observed from a rotating frame it seems to behave as if unseen
forces are present that affect its motion. If (2.12) is written, as is common, with the terms
+2Ω× vr and +Ω× (Ω× r) on the left-hand side then these terms should be referred to
as the Coriolis and centrifugal accelerations.1
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Centrifugal force

If r⊥ is the perpendicular distance from the axis of rotation (see Fig. 2.1 and substitute r
for C), then, because Ω is perpendicular to r⊥, Ω × r = Ω × r⊥. Then, using the vector
identity Ω × (Ω × r⊥) = (Ω · r⊥)Ω − (Ω ·Ω)r⊥ and noting that the first term is zero, we
see that the centrifugal force per unit mass is just given by

Fce = −Ω× (Ω× r) = Ω2r⊥. (2.13)

This may usefully be written as the gradient of a scalar potential,

Fce = −∇Φce. (2.14)

where Φce = −(Ω2r 2
⊥)/2 = −(Ω× r⊥)2/2.

Coriolis force

The Coriolis force per unit mass is:

FCo = −2Ω× vR. (2.15)

It plays a central role in much of geophysical fluid dynamics and will be considered exten-
sively later on. For now, we just note three basic properties.

(i) There is no Coriolis force on bodies that are stationary in the rotating frame.
(ii) The Coriolis force acts to deflect moving bodies at right angles to their direction of

travel.
(iii) The Coriolis force does no work on a body because it is perpendicular to the velocity,

and so vR · (Ω× vR) = 0.

2.1.3 Momentum equation in a rotating frame

Since (2.12) simply relates the accelerations of a particle in the inertial and rotating frames,
then in the rotating frame of reference the momentum equation may be written

Dv
Dt

+ 2Ω× v = − 1

ρ
∇p −∇Φ. (2.16)

We have dropped the subscript R; henceforth, unless ambiguity is present, all velocities
without a subscript will be considered to be relative to the rotating frame.

2.1.4 Mass and tracer conservation in a rotating frame

Let φ be a scalar field that, in the inertial frame, obeys

Dφ
Dt

+φ∇ · vI = 0. (2.17)

Now, observers in both the rotating and inertial frame measure the same value of φ. Fur-
ther, Dφ/Dt is simply the rate of change of φ associated with a material parcel, and there-
fore is reference frame invariant. Thus,(

Dφ
Dt

)
R
=
(

Dφ
Dt

)
I
, (2.18)
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where (Dφ/Dt)R = (∂φ/∂t)R + vR · ∇φ and (Dφ/Dt)I = (∂φ/∂t)I + vI · ∇φ and the
local temporal derivatives (∂φ/∂t)R and (∂φ/∂t)I are evaluated at fixed locations in the
rotating and inertial frames, respectively.

Further, since v = vI −Ω× r, we have that

∇ · vI = ∇ · (vI −Ω× r) = ∇ · vR (2.19)

since ∇ · (Ω× r) = 0. Thus, using (2.18) and (2.19), (2.17) is equivalent to

Dφ
Dt

+φ∇ · v = 0, (2.20)

where all observables are measured in the rotating frame. Thus, the equation for the evo-
lution of a scalar whose measured value is the same in rotating and inertial frames is unal-
tered by the presence of rotation. In particular, the mass conservation equation is unaltered
by the presence of rotation.

Although we have taken (2.18) as true a priori, the individual components of the material
derivative differ in the rotating and inertial frames. In particular(

∂φ
∂t

)
I
=
(
∂φ
∂t

)
R
− (Ω× r) · ∇φ (2.21)

because Ω× r is the velocity, in the inertial frame, of a uniformly rotating body. Similarly,

vI · ∇φ = (vR +Ω× r) · ∇φ. (2.22)

Adding the last two equations reprises and confirms (2.18).

2.2 EQUATIONS OF MOTION IN SPHERICAL COORDINATES

The Earth is very nearly spherical and it might appear obvious that we should cast our
equations in spherical coordinates. Although this does turn out to be true, the presence
of a centrifugal force causes some complications which we must first discuss. The reader
who is willing ab initio to treat the Earth as a perfect sphere and to neglect the horizontal
component of the centrifugal force may skip the next section.

2.2.1 * The centrifugal force and spherical coordinates

The centrifugal force is a potential force, like gravity, and so we may therefore define an
‘effective gravity’ equal to the sum of the true, or Newtonian, gravity and the centrifugal
force. The Newtonian gravitational force is directed approximately toward the centre of the
Earth, with small deviations due mainly to the Earth’s oblateness. The line of action of the
effective gravity will in general differ slightly from this, and therefore have a component in
the ‘horizontal’ plane, that is the plane perpendicular to the radial direction. The magnitude
of the centrifugal force is Ω2r⊥, and so the effective gravity is given by

g ≡ geff = ggrav +Ω2r⊥, (2.23)

where ggrav is the Newtonian gravitational force due to the gravitational attraction of the
Earth and r⊥ is normal to the rotation vector (in the direction C in Fig. 2.2), with r⊥ =
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ghoriz ≠ 0

ghoriz = 0

g
g

Fig. 2.2 Left: directions of forces and coordinates in true spherical geometry. g is
the effective gravity (including the centrifugal force, C) and its horizontal component
is evidently non-zero. Right: a modified coordinate system, in which the vertical
direction is defined by the direction of g, and so the horizontal component of g
is identically zero. The dashed line schematically indicates a surface of constant
geopotential. The differences between the direction of g and the direction of the
radial coordinate, and between the sphere and the geopotential surface, are much
exaggerated and in reality are similar to the thickness of the lines themselves.

r cosϑ. Both gravity and centrifugal force are potential forces and therefore we may define
the geopotential, Φ, such that

g = −∇Φ. (2.24)

Surfaces of constant Φ are not quite spherical because r⊥, and hence the centrifugal force,
vary with latitude (Fig. 2.2); this has certain ramifications, as we now discuss.

The components of the centrifugal force parallel and perpendicular to the radial direc-
tion are Ω2r cos2 ϑ and Ω2r cosϑ sinϑ. Newtonian gravity is much larger than either of
these, and at the Earth’s surface the ratio of centrifugal to gravitational terms is approxi-
mately, and no more than,

α ≈ Ω
2a
g

≈ (7.27× 10−5)2 × 6.4× 106

10
≈ 3× 10−3. (2.25)

(Note that at the equator and pole the horizontal component of the centrifugal force is zero
and the effective gravity is aligned with Newtonian gravity.) The angle between g and the
line to the centre of the Earth is given by a similar expression and so is also small, typically
around 3×10−3 radians. However, the horizontal component of the centrifugal force is still
large compared to the Coriolis force, their ratio in mid-latitudes being given by

horizontal centrifugal force

Coriolis force
≈ Ω

2a cosϑ sinϑ
2Ωu

≈ Ωa
4|u| ≈ 10, (2.26)

using u = 10 m s−1. The centrifugal term therefore dominates over the Coriolis term, and
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is largely balanced by a pressure gradient force. Thus, if we adhered to true spherical
coordinates, both the horizontal and radial components of the momentum equation would
be dominated by a static balance between a pressure gradient and gravity or centrifugal
terms. Although in principle there is nothing wrong with writing the equations this way, it
obscures the dynamical balances involving the Coriolis force and pressure that determine
the large-scale horizontal flow.

A way around this problem is to use the direction of the geopotential force to define
the vertical direction, and then for all geometric purposes to regard the surfaces of con-
stant Φ as if they were true spheres.2 The horizontal component of effective gravity is then
identically zero, and we have traded a potentially large dynamical error for a very small
geometric error. In fact, over time, the Earth has developed an equatorial bulge to com-
pensate for and neutralize the centrifugal force, so that the effective gravity does act in
a direction virtually normal to the Earth’s surface; that is, the surface of the Earth is an
oblate spheroid of nearly constant geopotential. The geopotential Φ is then a function of
the vertical coordinate alone, and for many purposes we can just take Φ = gz; that is, the
direction normal to geopotential surfaces, the local vertical, is, in this approximation, taken
to be the direction of increasing r in spherical coordinates. It is because the oblateness is
very small (the polar diameter is about 12 714 km, whereas the equatorial diameter is about
12 756 km) that using spherical coordinates is a very accurate way to map the spheroid, and
if the angle between effective gravity and a natural direction of the coordinate system were
not small then more heroic measures would be called for.

If the solid Earth did not bulge at the equator, the behaviour of the atmosphere and
ocean would differ significantly from that of the present system. For example, the surface
of the ocean is nearly a geopotential surface, and if the solid Earth were exactly spherical
then the ocean would perforce become much deeper at low latitudes and the ocean basins
would dry out completely at high latitudes. We could still choose to use the spherical
coordinate system discussed above to describe the dynamics, but the shape of the surface
of the solid Earth would have to be represented by a topography, with the topographic
height increasing monotonically polewards nearly everywhere.

2.2.2 Some identities in spherical coordinates

The location of a point is given by the coordinates (λ,ϑ, r) where λ is the angular distance
eastwards (i.e., longitude), ϑ is angular distance polewards (i.e., latitude) and r is the radial
distance from the centre of the Earth — see Fig. 2.3. (In some other fields of study co-
latitude is used as a spherical coordinate.) If a is the radius of the Earth, then we also define
z = r − a. At a given location we may also define the Cartesian increments (δx,δy,δz) =
(r cosϑδλ, rδϑ,δr).

For a scalar quantity φ the material derivative in spherical coordinates is

Dφ
Dt

= ∂φ
∂t

+ u
r cosϑ

∂φ
∂λ

+ v
r
∂φ
∂ϑ

+w∂φ
∂r
, (2.27)

where the velocity components corresponding to the coordinates (λ,ϑ, r) are

(u,v,w) ≡
(
r cosϑ

Dλ
Dt
, r

Dϑ
Dt
,

Dr
Dt

)
. (2.28)
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Fig. 2.3 The spherical coordinate sys-
tem. The orthogonal unit vectors i,
j and k point in the direction of in-
creasing longitude λ, latitude ϑ, and
altitude z. Locally, one may apply a
Cartesian system with variables x, y
and z measuring distances along i, j
and k.

That is, u is the zonal velocity, v is the meridional velocity and w is the vertical velocity. If
we define (i, j,k) to be the unit vectors in the direction of increasing (λ,ϑ, r) then

v = iu+ jv + kw. (2.29)

Note also that Dr/Dt = Dz/Dt.
The divergence of a vector B = iBλ + jBϑ + kBr is

∇ · B = 1

cosϑ

[
1

r
∂Bλ

∂λ
+ 1

r
∂
∂ϑ
(Bϑ cosϑ)+ cosϑ

r 2

∂
∂r
(r 2Br )

]
. (2.30)

The vector gradient of a scalar is:

∇φ = i
1

r cosϑ
∂φ
∂λ

+ j
1

r
∂φ
∂ϑ

+ k
∂φ
∂r
. (2.31)

The Laplacian of a scalar is:

∇2φ ≡ ∇ ·∇φ = 1

r 2 cosϑ

[
1

cosϑ
∂2φ
∂λ2

+ ∂
∂ϑ

(
cosϑ

∂φ
∂ϑ

)
+ cosϑ

∂
∂r

(
r 2 ∂φ
∂r

)]
. (2.32)
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The curl of a vector is:

curlB = ∇× B = 1

r 2 cosϑ

∣∣∣∣∣∣∣
i r cosϑ j r k
∂/∂λ ∂/∂ϑ ∂/∂r

Bλr cosϑ Bϑr Br

∣∣∣∣∣∣∣ . (2.33)

The vector Laplacian ∇2B (used for example when calculating viscous terms in the momen-
tum equation) may be obtained from the vector identity:

∇2B = ∇(∇ · B)−∇× (∇× B). (2.34)

Only in Cartesian coordinates does this take the simple form:

∇2B = ∂
2B
∂x2

+ ∂
2B
∂y2

+ ∂
2B
∂z2

. (2.35)

The expansion in spherical coordinates is, to most eyes, rather uninformative.

Rate of change of unit vectors

In spherical coordinates the defining unit vectors are i, the unit vector pointing eastwards,
parallel to a line of latitude; j is the unit vector pointing polewards, parallel to a meridian;
and k, the unit vector pointing radially outward. The directions of these vectors change
with location, and in fact this is the case in nearly all coordinate systems, with the notable
exception of the Cartesian one, and thus their material derivative is not zero. One way to
evaluate this is to consider geometrically how the coordinate axes change with position.
Another way, and the way that we shall proceed, is to first obtain the effective rotation
rate Ωflow, relative to the Earth, of a unit vector as it moves with the flow, and then apply
(2.3). Specifically, let the fluid velocity be v = (u,v,w). The meridional component, v ,
produces a displacement rδϑ = vδt, and this gives rise a local effective vector rotation
rate around the local zonal axis of −(v/r)i, the minus sign arising because a displacement
in the direction of the north pole is produced by negative rotational displacement around
the i axis. Similarly, the zonal component, u, produces a displacement δλr cosϑ = uδt
and so an effective rotation rate, about the Earth’s rotation axis, of u/(r cosϑ). Now, a
rotation around the Earth’s rotation axis may be written as (see Fig. 2.4)

Ω = Ω(j cosϑ + k sinϑ). (2.36)

If the scalar rotation rate is not Ω but is u/(r cosϑ), then the vector rotation rate is

u
r cosϑ

(j cosϑ + k sinϑ) = j
u
r
+ k

u tanϑ
r

. (2.37)

Thus, the total rotation rate of a vector that moves with the flow is

Ωflow = −i
v
r
+ j
u
r
+ k

u tanϑ
r

. (2.38)

Applying (2.3) to (2.38), we find

Di

Dt
= Ωflow × i = u

r cosϑ
(j sinϑ − k cosϑ), (2.39a)

Dj

Dt
= Ωflow × j = −i

u
r

tanϑ − k
v
r
, (2.39b)

Dk

Dt
= Ωflow × k = i

u
r
+ j
v
r
. (2.39c)
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(a) (b)Ω Ω
y

Ω
z

Ω = Ω
zk

k

k

Fig. 2.4 (a) On the sphere the rotation vector Ω can be decomposed into two com-
ponents, one in the local vertical and one in the local horizontal, pointing toward
the pole. That is, Ω = Ωy j + Ωzk where Ωy = Ω cosϑ and Ωz = Ω sinϑ. In geo-
physical fluid dynamics, the rotation vector in the local vertical is often the more
important component in the horizontal momentum equations. On a rotating disk,
(b), the rotation vector Ω is parallel to the local vertical k.

2.2.3 Equations of motion

Mass Conservation and Thermodynamic Equation

The mass conservation equation, (1.36a), expanded in spherical co-odinates, is

∂ρ
∂t

+ u
r cosϑ

∂ρ
∂λ

+ v
r
∂ρ
∂ϑ

+w∂ρ
∂r

+ ρ
r cosϑ

[
∂u
∂λ

+ ∂
∂ϑ
(v cosϑ)+ 1

r
∂
∂r
(wr 2 cosϑ)

]
= 0.

(2.40)

Equivalently, using the form (1.36b), this is

∂ρ
∂t

+ 1

r cosϑ
∂(uρ)
∂λ

+ 1

r cosϑ
∂
∂ϑ
(vρ cosϑ)+ 1

r 2

∂
∂r
(r 2wρ) = 0. (2.41)

The thermodynamic equation, (1.108), is a tracer advection equation. Thus, using (2.27),
its (adiabatic) spherical coordinate form is

Dθ
Dt

= ∂θ
∂t

+ u
r cosϑ

∂θ
∂λ

+ v
r
∂θ
∂ϑ

+w∂θ
∂r

= 0, (2.42)

and similarly for tracers such as water vapour or salt.

Momentum Equation

Recall that the inviscid momentum equation is:

Dv
Dt

+ 2Ω× v = − 1

ρ
∇p −∇Φ, (2.43)

where Φ is the geopotential. In spherical coordinates the directions of the coordinate axes
change with position and so the component expansion of (2.43) is

Dv
Dt

= Du
Dt

i+ Dv
Dt

j+ Dw
Dt

k+uDi

Dt
+ v Dj

Dt
+wDk

Dt
(2.44a)
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= Du
Dt

i+ Dv
Dt

j+ Dw
Dt

k+Ωflow × v, (2.44b)

using (2.39). Using either (2.44a) and the expressions for the rates of change of the unit
vectors given in (2.39), or (2.44b) and the expression forΩflow given in (2.38), (2.44) becomes

Dv
Dt

= i

(
Du
Dt

− uv tanϑ
r

+ uw
r

)
+ j

(
Dv
Dt

+ u
2 tanϑ
r

+ vw
r

)

+ k

(
Dw
Dt

− u
2 + v2

r

)
.

(2.45)

Using the definition of a vector cross product the Coriolis term is:

2Ω× v =

∣∣∣∣∣∣∣
i j k
0 2Ω cosϑ 2Ω sinϑ
u v w

∣∣∣∣∣∣∣
= i (2Ωw cosϑ − 2Ωv sinϑ)+ j 2Ωu sinϑ − k 2Ωu cosϑ. (2.46)

Using (2.45) and (2.46), and the gradient operator given by (2.31), the momentum equation
(2.43) becomes:

Du
Dt

−
(

2Ω + u
r cosϑ

)
(v sinϑ −w cosϑ) = − 1

ρr cosϑ
∂p
∂λ
, (2.47a)

Dv
Dt

+ wv
r
+
(

2Ω + u
r cosϑ

)
u sinϑ = − 1

ρr
∂p
∂ϑ
, (2.47b)

Dw
Dt

− u
2 + v2

r
− 2Ωu cosϑ = − 1

ρ
∂p
∂r

− g. (2.47c)

The terms involving Ω are called Coriolis terms, and the quadratic terms on the left-hand
sides involving 1/r are often called metric terms.

2.2.4 The primitive equations

The so-called primitive equations of motion are simplifications of the above equations fre-
quently used in atmospheric and oceanic modelling.3 Three related approximations are
involved.

(i) The hydrostatic approximation. In the vertical momentum equation the gravitational
term is assumed to be balanced by the pressure gradient term, so that

∂p
∂z

= −ρg. (2.48)

The advection of vertical velocity, the Coriolis terms, and the metric term (u2 +v2)/r
are all neglected.

(ii) The shallow-fluid approximation. We write r = a+z where the constant a is the radius
of the Earth and z increases in the radial direction. The coordinate r is then replaced
by a except where it used as the differentiating argument. Thus, for example,

1

r 2

∂(r 2w)
∂r

→ ∂w
∂z
. (2.49)
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(iii) The traditional approximation. Coriolis terms in the horizontal momentum equations
involving the vertical velocity, and the still smaller metric terms uw/r and vw/r , are
neglected.

The second and third of these approximations should be taken, or not, together, the under-
lying reason being that they both relate to the presumed small aspect ratio of the motion,
so the approximations succeed or fail together. If we make one approximation but not the
other then we are being asymptotically inconsistent, and angular momentum and energy
conservation are not assured (see section 2.2.7 and problem 2.13). The hydrostatic approx-
imation also depends on the small aspect ratio of the flow, but in a slightly different way.
For large-scale flow in the terrestrial atmosphere and ocean all three approximations are in
fact all very accurate approximations. We defer a more complete treatment until section
2.7, in part because a treatment of the hydrostatic approximation is done most easily in the
context of the Boussinesq equations, derived in section 2.4.

Making these approximations, the momentum equations become

Du
Dt

− 2Ω sinϑv − uv
a

tanϑ = − 1

aρ cosϑ
∂p
∂λ
, (2.50a)

Dv
Dt

+ 2Ω sinϑu+ u
2 tanϑ
a

= − 1

ρa
∂p
∂ϑ
, (2.50b)

0 = − 1

ρ
∂p
∂z

− g, (2.50c)

where
D

Dt
=
(
∂
∂t
+ u
a cosϑ

∂
∂λ

+ v
a
∂
∂ϑ

+w ∂
∂z

)
. (2.51)

We note the ubiquity of the factor 2Ω sinϑ, and take the opportunity to define the Coriolis
parameter, f ≡ 2Ω sinϑ.

The corresponding mass conservation equation for a shallow fluid layer is:

∂ρ
∂t

+ u
a cosϑ

∂ρ
∂λ

+ v
a
∂ρ
∂ϑ

+w∂ρ
∂z

+ ρ
[

1

a cosϑ
∂u
∂λ

+ 1

a cosϑ
∂
∂ϑ
(v cosϑ)+ ∂w

∂z

]
= 0,

(2.52)

or equivalently,

∂ρ
∂t

+ 1

a cosϑ
∂(uρ)
∂λ

+ 1

a cosϑ
∂
∂ϑ
(vρ cosϑ)+ ∂(wρ)

∂z
= 0. (2.53)

2.2.5 Primitive equations in vector form

The primitive equations may be written in a compact vector form provided we make a slight
reinterpretation of the material derivative of the coordinate axes. Let u = ui+ vj+ 0 k be
the horizontal velocity. The primitive equations (2.50a) and (2.50b) may be written as

Du
Dt

+ f × u = − 1

ρ
∇zp, (2.54)
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where f = fk = 2Ω sinϑk and ∇zp = [(a cosϑ)−1∂p/∂λ,a−1∂p/∂ϑ], the gradient op-
erator at constant z. In (2.54) the material derivative of the horizontal velocity is given
by

Du
Dt

= i
Du
Dt

+ j
Dv
Dt

+uDi

Dt
+ v Dj

Dt
, (2.55)

where instead of (2.39) we have

Di

Dt
= Ω̃flow × i = j

u tanϑ
a

, (2.56a)

Dj

Dt
= Ω̃flow × j = −i

u tanϑ
a

, (2.56b)

where Ω̃flow = ku tanϑ/a [which is the vertical component of (2.38), with r replaced by
a.]. The advection of the horizontal wind u is still by the three-dimensional velocity v. The
vertical momentum equation is the hydrostatic equation, (2.50c), and the mass conservation
equation is

Dρ
Dt

+ ρ∇ · v = 0 or
∂ρ
∂t

+∇ · (ρv) = 0, (2.57)

where D/Dt on a scalar is given by (2.51), and the second expression is written out in full
in (2.53).

2.2.6 The vector invariant form of the momentum equation

The ‘vector invariant’ form of the momentum equation is so-called because it appears to
take the same form in all coordinate systems — there is no advective derivative of the
coordinate system to worry about. With the aid of the identity (v·∇)v = −v×ω+∇(v2/2),
where ω ≡ ∇× v is the relative vorticity, the three-dimensional momentum equation may
be written:

∂v
∂t

+ (2Ω+ω)× v = − 1

ρ
∇p − 1

2
∇v2 + g. (2.58)

In spherical coordinates the relative vorticity is given by:

ω = ∇× v = 1

r 2 cosϑ

∣∣∣∣∣∣∣
i r cosϑ j r k
∂/∂λ ∂/∂ϑ ∂/∂r
ur cosϑ rv w

∣∣∣∣∣∣∣
= i

1

r

(
∂w
∂ϑ

− ∂(rv)
∂r

)
− j

1

r cosϑ

(
∂w
∂λ

− ∂
∂r
(ur cosϑ)

)
+ k

1

r cosϑ

(
∂v
∂λ

− ∂
∂ϑ
(u cosϑ)

)
. (2.59)

Making the traditional and shallow fluid approximations, the horizontal components of
(2.58) may be written

∂u
∂t

+ (f + kζ)× u+w∂u
∂z

= − 1

ρ
∇zp −

1

2
∇u2, (2.60)

where u = (u,v,0), f = k 2Ω sinϑ, ∇z is the horizontal gradient operator (the gradient at
a constant value of z), and using (2.59), ζ is given by

ζ = 1

a cosϑ
∂v
∂λ

− 1

a cosϑ
∂
∂ϑ
(u cosϑ) = 1

a cosϑ
∂v
∂λ

− 1

a
∂u
∂ϑ

+ u
a

tanϑ. (2.61)
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The separate components of the momentum equation are given by:

∂u
∂t

− (f + ζ)v +w∂u
∂z

= − 1

aρ cosϑ

(
1

ρ
∂p
∂λ

+ 1

2

∂u2

∂λ

)
, (2.62)

and
∂v
∂t

+ (f + ζ)u+w∂v
∂z

= − 1

a

(
1

ρ
∂p
∂ϑ

+ 1

2

∂u2

∂ϑ

)
. (2.63)

Related expressions are given in problem 2.3, and we treat vorticity at greater length in
chapter 4.

2.2.7 Angular momentum

The zonal momentum equation can be usefully expressed as a statement about axial an-
gular momentum; that is, angular momentum about the rotation axis. The zonal angular
momentum per unit mass is the component of angular momentum in the direction of the
axis of rotation and it is given by, without making any shallow atmosphere approximation,

m = (u+Ωr cosϑ)r cosϑ. (2.64)

The evolution equation for this quantity follows from the zonal momentum equation and
has the simple form

Dm
Dt

= − 1

ρ
∂p
∂λ
, (2.65)

where the material derivative is

D

Dt
= ∂
∂t
+ u
r cosϑ

∂
∂λ

+ v
r
∂
∂ϑ

+w ∂
∂r
. (2.66)

Using the mass continuity equation, (2.65) can be written as

Dρm
Dt

+ ρm∇ · v = −∂p
∂λ

(2.67)

or

∂ρm
∂t

+ 1

r cosϑ
∂(ρum)
∂λ

+ 1

r cosϑ
∂
∂ϑ
(ρvm cosϑ)+ ∂

∂z
(ρmw) = −∂p

∂λ
. (2.68)

This is an angular momentum conservation equation.
If the fluid is confined to a shallow layer near the surface of a sphere, then we may

replace r , the radial coordinate, by a, the radius of the sphere, in the definition of m, and
we define m̃ ≡ (u+Ωa cosϑ)a cosϑ. Then (2.65) is replaced by

Dm̃
Dt

= − 1

ρ
∂p
∂λ
, (2.69)

where now
D

Dt
= ∂
∂t
+ u
a cosϑ

∂
∂λ

+ v
a
∂
∂ϑ

+w ∂
∂z
. (2.70)

Using mass continuity, (2.69) may be written as

∂ρm̃
∂t

+ u
a cosϑ

∂m̃
∂λ

+ v
a
∂m̃
∂ϑ

+w∂m̃
∂z

= − 1

ρ
∂p
∂λ
, (2.71)

which is the appropriate angular momentum conservation equation for a shallow atmo-
sphere.
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* From angular momentum to the spherical component equations

An alternative way of deriving the three components of the momentum equation in spher-
ical polar coordinates is to begin with (2.65) and the principle of conservation of energy.
That is, we take the equations for conservation of angular momentum and energy as true
a priori and demand that the forms of the momentum equation be constructed to satisfy
these. Expanding the material derivative in (2.65), noting that Dr/Dt = w and Dcosϑ/Dt =
−(v/r) sinϑ, immediately gives (2.47a). Multiplication by u then yields

u
Du
Dt

− 2Ωuv sinϑ + 2Ωuw cosϑ − u
2v tanϑ
r

+ u
2w
r

= − u
ρr cosϑ

∂p
∂λ
. (2.72)

Now suppose that the meridional and vertical momentum equations are of the form

Dv
Dt

+ Coriolis and metric terms = − 1

ρr
∂p
∂ϑ

(2.73a)

Dw
Dt

+ Coriolis and metric terms = − 1

ρ
∂p
∂r
, (2.73b)

but that we do not know what form the Coriolis and metric terms take. To determine
that form, construct the kinetic energy equation by multiplying (2.73) by v and w , respec-
tively. Now, the metric terms must vanish when we sum the resulting equations along
with (2.72), so that (2.73a) must contain the Coriolis term 2Ωu sinϑ as well as the metric
term u2 tanϑ/r , and (2.73b) must contain the term −2Ωu cosφ as well as the metric term
u2/r . But if (2.73b) contains the term u2/r it must also contain the term v2/r by isotropy,
and therefore (2.73a) must also contain the term vw/r . In this way, (2.47) is precisely re-
produced, although the sceptic might argue that the uniqueness of the form has not been
demonstrated.

A particular advantage of this approach arises in determining the appropriate momen-
tum equations that conserve angular momentum and energy in the shallow-fluid approxi-
mation. We begin with (2.69) and expand to obtain (2.50a). Multiplying by u gives

u
Du
Dt

− 2Ωuv sinϑ − u
2v tanϑ
a

= − u
ρa cosϑ

∂p
∂λ
. (2.74)

To ensure energy conservation, the meridional momentum equation must contain the Cori-
olis term 2Ωu sinϑ and the metric term u2 tanϑ/a, but the vertical momentum equation
must have neither of the metric terms appearing in (2.47c). Thus we deduce the following
equations:

Du
Dt

−
(

2Ω sinϑ + u tanϑ
a

)
v = − 1

ρa cosϑ
∂p
∂λ
, (2.75a)

Dv
Dt

+
(

2Ω sinϑ + u tanϑ
a

)
u = − 1

ρa
∂p
∂ϑ
, (2.75b)

Dw
Dt

= − 1

ρ
∂ρ
∂r

− g. (2.75c)

This equation set, when used in conjunction with the thermodynamic and mass continu-
ity equations, conserves appropriate forms of angular momentum and energy. In the hy-
drostatic approximation the material derivative of w in (2.75c) is additionally neglected.
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Thus, the hydrostatic approximation is mathematically and physically consistent with the
shallow-fluid approximation, but it is an additional approximation with slightly different re-
quirements that one may choose, rather than being required, to make. From an asymptotic
perspective, the difference lies in the small parameter necessary for either approximation
to hold, namely:

shallow fluid and traditional approximations: γ ≡ H
a
� 1, (2.76a)

small aspect ratio for hydrostatic approximation: α ≡ H
L
� 1, (2.76b)

where L is the horizontal scale of the motion and a is the radius of the Earth. For hemi-
spheric or global scale phenomena L ∼ a and the two approximations coincide. (Require-
ment (2.76b) for the hydrostatic approximation is derived in section 2.7.)

2.3 CARTESIAN APPROXIMATIONS: THE TANGENT PLANE

2.3.1 The f-plane

Although the rotation of the Earth is central for many dynamical phenomena, the sphericity
of the Earth is not always so. This is especially true for phenomena on a scale somewhat
smaller than global where the use of spherical coordinates becomes awkward, and it is
more convenient to use a locally Cartesian representation of the equations. Referring to
Fig. 2.4 we will define a plane tangent to the surface of the Earth at a latitude ϑ0, and then
use a Cartesian coordinate system (x,y, z) to describe motion on that plane. For small
excursions on the plane, (x,y, z) ≈ (aλ cosϑ0, a(ϑ − ϑ0), z). Consistently, the velocity is
v = (u,v,w), so that u,v and w are the components of the velocity in the tangent plane,
in approximately in the east–west, north–south and vertical directions, respectively.

The momentum equations for flow in this plane are then

∂u
∂t
+ (v · ∇)u+ 2Ωyw − 2Ωzv = − 1

ρ
∂p
∂x
, (2.77a)

∂v
∂t
+ (v · ∇)v + 2Ωzu = − 1

ρ
∂p
∂y
, (2.77b)

∂w
∂t

+ (v · ∇)w + 2(Ωxv −Ωyu) = − 1

ρ
∂p
∂z

− g, (2.77c)

where the rotation vector Ω = Ωxi + Ωy j + Ωzk and Ωx = 0, Ωy = Ω cosϑ0 and Ωz =
Ω sinϑ0. If we make the traditional approximation, and so ignore the components ofΩ not
in the direction of the local vertical, then

Du
Dt

− f0v = −
1

ρ
∂p
∂x
, (2.78a)

Dv
Dt

+ f0u = −
1

ρ
∂p
∂y
, (2.78b)

Dw
Dt

= − 1

ρ
∂p
∂z

− ρg. (2.78c)

where f0 = 2Ωz = 2Ω sinϑ0. Defining the horizontal velocity vector u = (u,v,0), the first
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two equations may also be written as

Du
Dt

+ f0 × u = −
1

ρ
∇zp, (2.79)

where Du/Dt = ∂u/∂t + v · ∇u, f0 = 2Ω sinϑ0k = f0k, and k is the direction perpen-
dicular to the plane (it does not change its orientation with latitude). These equations are,
evidently, exactly the same as the momentum equations in a system in which the rotation
vector is aligned with the local vertical, as illustrated in the right-hand panel in Fig. 2.4 (on
page 60). They will describe flow on the surface of a rotating sphere to a good approxima-
tion provided the flow is of limited latitudinal extent so that the effects of sphericity are
unimportant; we have made what is known as the f -plane approximation since the Coriolis
parameter is a constant. We may in addition make the hydrostatic approximation, in which
case (2.78c) becomes the familiar ∂p/∂z = −ρg.

2.3.2 The beta-plane approximation

The magnitude of the vertical component of rotation varies with latitude, and this has im-
portant dynamical consequences. We can approximate this effect by allowing the effective
rotation vector to vary. Thus, noting that, for small variations in latitude,

f = 2Ω sinϑ ≈ 2Ω sinϑ0 + 2Ω(ϑ − ϑ0) cosϑ0, (2.80)

then on the tangent plane we may mimic this by allowing the Coriolis parameter to vary as

f = f0 + βy , (2.81)

where f0 = 2Ω sinϑ0 and β = ∂f/∂y = (2Ω cosϑ0)/a. This important approximation is
known as the beta-plane, or β-plane, approximation; it captures the the most important dy-
namical effects of sphericity, without the complicating geometric effects, which are not es-
sential to describe many phenomena. The momentum equations (2.78) are unaltered except
that f0 is replaced by f0 + βy to represent a varying Coriolis parameter. Thus, sphericity
combined with rotation is dynamically equivalent to a differentially rotating system. For
future reference, we write down the β-plane horizontal momentum equations:

Du
Dt

+ f × u = − 1

ρ
∇zp, (2.82)

where f = (f0 + βy)k̂. In component form this equation becomes

Du
Dt

− fv = − 1

ρ
∂p
∂x
,

Dv
Dt

+ fu = − 1

ρ
∂p
∂y
. (2.83a,b)

The mass conservation, thermodynamic and hydrostatic equations in the β-plane approxi-
mation are the same as the usual Cartesian, f -plane, forms of those equations.

2.4 EQUATIONS FOR A STRATIFIED OCEAN: THE BOUSSINESQ APPROXIMATION

The density variations in the ocean are quite small compared to the mean density, and we
may exploit this to derive somewhat simpler but still quite accurate equations of motion.
Let us first examine how much density does vary in the ocean.
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2.4.1 Variation of density in the ocean

The variations of density in the ocean are due to three effects: the compression of water
by pressure (which we denote as ∆pρ), the thermal expansion of water if its temperature
changes (∆Tρ), and the haline contraction if its salinity changes (∆Sρ). How big are these?
An appropriate equation of state to approximately evaluate these effects is the linear one

ρ = ρ0

[
1− βT (T − T0)+ βS(S − S0)+

p
ρ0c2

s

]
, (2.84)

where βT ≈ 2 × 10−4 K−1, βS ≈ 10−3 psu−1 and cs ≈ 1500 m s−1 (see the table on page 35).
The three effects may then be evaluated as follows.

Pressure compressibility. We have ∆pρ ≈ ∆p/c2
s ≈ ρ0gH/c2

s . whereH is the depth and the
pressure change is quite accurately evaluated using the hydrostatic approximation.
Thus,

|∆pρ|
ρ0

� 1 if
gH
c2
s
� 1, (2.85)

or if H � c2
s /g. The quantity c2

s /g ≈ 200 km is the density scale height of the ocean.
Thus, the pressure at the bottom of the ocean (say H = 10 km in the deep trenches),
enormous as it is, is insufficient to compress the water enough to make a significant
change in its density. Changes in density due to dynamical variations of pressure are
small if the Mach number is small, and this is also the case.

Thermal expansion. We have ∆Tρ ≈ −βTρ0∆T and therefore

|∆Tρ|
ρ0

� 1 if βT∆T � 1. (2.86)

For ∆T = 20 K, βT∆T ≈ 4× 10−3, and evidently we would require temperature differ-
ences of order β−1

T , or 5000 K to obtain order one variations in density.

Saline contraction. We have ∆Sρ ≈ βSρ0∆S and therefore

|∆Sρ|
ρ0

� 1 if βS∆S � 1. (2.87)

As changes in salinity in the ocean rarely exceed 5 psu, for which βS∆S = 5 × 10−3,
the fractional change in the density of seawater is correspondingly very small.

Evidently, fractional density changes in the ocean are very small.

2.4.2 The Boussinesq equations

The Boussinesq equations are a set of equations that exploit the smallness of density varia-
tions in many liquids.4 To set notation we write

ρ = ρ0 + δρ(x,y, z, t) (2.88a)

= ρ0 + ρ̂(z)+ ρ′(x,y, z, t) (2.88b)

= ρ̃(z)+ ρ′(x,y, z, t), (2.88c)
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where ρ0 is a constant and we assume that

|ρ̂|, |ρ′|, |δρ| � ρ0. (2.89)

We need not assume that |ρ′| � |ρ̂|, but this is often the case in the ocean. To obtain the
Boussinesq equations we will just use (2.88a), but (2.88c) will be useful for the anelastic
equations considered later.

Associated with the reference density is a reference pressure that is defined to be in
hydrostatic balance with it. That is,

p = p0(z)+ δp(x,y, z, t) (2.90a)

= p̃(z)+ p′(x,y, z, t), (2.90b)

where |δp| � p0, |p′| � p̃ and

dp0

dz
≡ −gρ0,

dp̃
dz

≡ −gρ̃. (2.91a,b)

Note that ∇zp = ∇zp′ = ∇zδp and that p0 ≈ p̃ if |ρ̂| � ρ0.

Momentum equations

To obtain the Boussinesq equations we use ρ = ρ0 + δρ, and assume δρ/ρ0 is small.
Without approximation, the momentum equation can be written as

(ρ0 + δρ)
(

Dv
Dt

+ 2Ω × v
)
= −∇δp − ∂p0

∂z
k− g(ρ0 + δρ)k, (2.92)

and using (2.91a) this becomes, again without approximation,

(ρ0 + δρ)
(

Dv
Dt

+ 2Ω × v
)
= −∇δp − gδρk. (2.93)

If density variations are small this becomes

Dv
Dt

+ 2Ω × v = −∇φ+ bk , (2.94)

where φ = δp/ρ0 and b = −g δρ/ρ0 is the buoyancy. Note that we should not and do not
neglect the term g δρ, for there is no reason to believe it to be small (δρ may be small, but
g is big). Equation (2.94) is the momentum equation in the Boussinesq approximation, and
it is common to say that the Boussinesq approximation ignores all variations of density of
a fluid in the momentum equation, except when associated with the gravitational term.

For most large-scale motions in the ocean the deviation pressure and density fields are
also approximately in hydrostatic balance, and in that case the vertical component of (2.94)
becomes

∂φ
∂z

= b. (2.95)

A condition for (2.95) to hold is that vertical accelerations are small compared to g δρ/ρ0,
and not compared to the acceleration due to gravity itself. For more discussion of this point,
see section 2.7.
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Mass Conservation

The unapproximated mass conservation equation is

Dδρ
Dt

+ (ρ0 + δρ)∇ · v = 0. (2.96)

Provided that time scales advectively — that is to say that D/Dt scales in the same way as
v · ∇ — then we may approximate this equation by

∇ · v = 0 , (2.97)

which is the same as that for a constant density fluid. This absolutely does not allow one
to go back and use (2.96) to say that Dδρ/Dt = 0; the evolution of density is given by
the thermodynamic equation in conjunction with an equation of state, and this should not
be confused with the mass conservation equation. Note also that in eliminating the time-
derivative of density we eliminate the possibility of sound waves.

Thermodynamic equation and equation of state

The Boussinesq equations are closed by the addition of an equation of state, a thermody-
namic equation and, as appropriate, a salinity equation. Neglecting salinity for the moment,
a useful starting point is to write the thermodynamic equation, (1.116), as

Dρ
Dt

− 1

c2
s

Dp
Dt

= Q̇
(∂η/∂ρ)pT

≈ −Q̇
(
ρ0βT
cp

)
(2.98)

using (∂η/∂ρ)p = (∂η/∂T )p(∂T/∂ρ)p ≈ cp/(Tρ0βT ). Given the expansions (2.88a) and
(2.90a), (2.98) can be written to a good approximation as

Dδρ
Dt

− 1

c2
s

Dp0

Dt
= −Q̇

(
ρ0βT
cp

)
, (2.99)

or, using (2.91a),
D

Dt

(
δρ + ρ0g

c2
s
z
)
= −Q̇

(
ρ0βT
cp

)
, (2.100)

as in (1.119). The severest approximation to this is to neglect the second term in brackets
on the left-hand side, and noting that b = −gδρ/ρ0 we obtain

Db
Dt

= ḃ , (2.101)

where ḃ = gβT Q̇/cp . The momentum equation (2.94), mass continuity equation (2.97)
and thermodynamic equation (2.101) then form a closed set, called the simple Boussinesq
equations.

A somewhat more accurate approach is to include the compressibility of the fluid that
is due to the hydrostatic pressure. From (2.100), the potential density is given by δρpot =
δρ + ρ0gz/c2

s , and so the potential buoyancy, that is the buoyancy based on potential
density, is given by

bσ ≡ −g
δρpot

ρ0
= − g

ρ0

(
δρ + ρ0gz

c2
s

)
= b − g z

Hρ
, (2.102)
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where Hρ = c2
s /g. The thermodynamic equation, (2.100), may then be written

Dbσ
Dt

= ḃσ , (2.103)

where ḃσ = ḃ. Buoyancy itself is obtained from bσ by the ‘equation of state’, b = bσ +
gz/Hρ .

In many applications we may need to use a still more accurate equation of state. In that
case (and see section 1.6.2) we replace (2.101) by the thermodynamic equations

Dθ
Dt

= θ̇, DS
Dt

= Ṡ , (2.104a,b)

where θ is the potential temperature and S is salinity, along with an equation of state. The
equation of state has the general form b = b(θ, S,p), but to be consistent with the level of
approximation in the other Boussinesq equations we replace p by the hydrostatic pressure
calculated with the reference density, that is by −ρ0gz, and the equation of state then takes
the general form

b = b(θ, S, z) . (2.105)

An example of (2.105) is (1.156), taken with the definition of buoyancy b = −gδρ/ρ0.
The closed set of equations (2.94), (2.97), (2.104) and (2.105) are the general Boussinesq
equations. Using an accurate equation of state and the Boussinesq approximation is the
procedure used in many comprehensive ocean general circulation models. The Boussinesq
equations, which with the hydrostatic and traditional approximations are often considered
to be the oceanic primitive equations, are summarized in the shaded box on the next page.

* Mean stratification and the buoyancy frequency

The processes that cause density to vary in the vertical often differ from those that cause
it to vary in the horizontal. For this reason it is sometimes useful to write ρ = ρ0 +
ρ̂(z) + ρ′(x,y, z, t) and define b̃(z) ≡ −gρ̂/ρ0 and b′ ≡ −gρ′/ρ0. Using the hydrostatic
equation to evaluate pressure, the thermodynamic equation (2.98) becomes, to a good ap-
proximation,

Db′

Dt
+N2w = 0, (2.106)

where D/Dt remains a three-dimensional operator and

N2(z) =
(

db̃
dz

− g
2

c2
s

)
= db̃σ

dz
, (2.107)

where b̃σ = b̃ − gz/Hρ . The quantity N2 is a measure of the mean stratification of the
fluid, and is equal to the vertical gradient of the mean potential buoyancy. N is known
as the buoyancy frequency, something we return to in section 2.9. Equations (2.106) and
(2.107) also hold in the simple Boussinesq equations, but with c2

s = ∞.
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Summary of Boussinesq Equations

The simple Boussinesq equations are, for an inviscid fluid:

momentum equations:
Dv
Dt

+ f × v = −∇φ+ bk, (B.1)

mass conservation: ∇ · v = 0, (B.2)

buoyancy equation:
Db
Dt

= ḃ. (B.3)

A more general form replaces the buoyancy equation by:

thermodynamic equation:
Dθ
Dt

= θ̇, (B.4)

salinity equation:
DS
Dt

= Ṡ, (B.5)

equation of state: b = b(θ, S,φ). (B.6)

Energy conservation is only assured if b = b(θ, S, z).

2.4.3 Energetics of the Boussinesq system

In a uniform gravitational field but with no other forcing or dissipation, we write the simple
Boussinesq equations as

Dv
Dt

+ 2Ω× v = bk−∇φ, ∇ · v = 0,
Db
Dt

= 0. (2.108a,b,c)

From (2.108a) and (2.108b) the kinetic energy density evolution (cf. section 1.10) is given by

1

2

Dv2

Dt
= bw −∇ · (φv), (2.109)

where the constant reference density ρ0 is omitted. Let us now define the potential Φ ≡ −z,
so that ∇Φ = −k and

DΦ
Dt

= ∇ · (vΦ) = −w, (2.110)

and using this and (2.108c) gives
D

Dt
(bΦ) = −wb. (2.111)

Adding (2.111) to (2.109) and expanding the material derivative gives

∂
∂t

(
1

2
v2 + bΦ

)
+∇ ·

[
v
(

1

2
v2 + bΦ +φ

)]
= 0. (2.112)

This constitutes an energy equation for the Boussinesq system, and may be compared to
(1.186). (Also see problem 2.14.) The energy density (divided by ρ0) is just v2/2+bΦ. What
does the term bΦ represent? Its integral, multiplied by ρ0, is the potential energy of the
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flow minus that of the basic state, or
∫
g(ρ − ρ0)z dz. If there were a heating term on the

right-hand side of (2.108c) this would directly provide a source of potential energy, rather
than internal energy as in the compressible system. Because the fluid is incompressible,
there is no conversion from kinetic and potential energy into internal energy.

* Energetics with a general equation of state

Now consider the energetics of the general Boussinesq equations. Suppose first that we
allow the equation of state to be a function of pressure; the equations are motion are then
(2.108) except that (2.108c) is replaced by

Dθ
Dt

= 0,
DS
Dt

= 0, b = b(θ, S,φ). (2.113a,b,c)

A little algebraic experimentation will reveal that no energy conservation law of the form
(2.112) generally exists for this system! The problem arises because, by requiring the fluid
to be incompressible, we eliminate the proper conversion of internal energy to kinetic en-
ergy. However, if we use the approximation b = b(θ, S, z), the system does conserve an
energy, as we now show.5

Define the potential, Π, as the integral of b at constant potential temperature and salin-
ity; that is

Π(θ, S, z) ≡ −
∫ z
a
b dz′, (2.114)

where a is any constant, so that ∂Π/∂z = −b. Taking the material derivative of the left-
hand side gives

DΠ
Dt

=
(
∂Π
∂θ

)
S,z

Dθ
Dt

+
(
∂Π
∂S

)
θ,z

DS
Dt

+
(
∂Π
∂z

)
θ,S

Dz
Dt

= −bw, (2.115)

using (2.113a,b). Combining (2.115) and (2.109) gives

∂
∂t

(
1

2
v2 +Π

)
+∇ ·

[
v
(

1

2
v2 +Π +φ

)]
= 0. (2.116)

Thus, energetic consistency is maintained with an arbitrary equation of state, provided the
pressure is replaced by a function of z. If b is not an explicit function of z in the equation
of state, the conservation law is identical to (2.112).

2.5 EQUATIONS FOR A STRATIFIED ATMOSPHERE: THE ANELASTIC APPROXIMATION

2.5.1 Preliminaries

In the atmosphere the density varies significantly, especially in the vertical. However de-
viations of both ρ and p from a statically balanced state are often quite small, and the
relative vertical variation of potential temperature is also small. We can usefully exploit
these observations to give a somewhat simplified set of equations, useful both for theoret-
ical and numerical analyses because sound waves are eliminated by way of an ‘anelastic’
approximation.6 To begin we set

ρ = ρ̃(z)+ δρ(x,y, z, t), p = p̃(z)+ δp(x,y, z, t), (2.117a,b)
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where we assume that |δρ| � |ρ̃| and we define p̃ such that

∂p̃
∂z

≡ −gρ̃(z). (2.118)

The notation is similar to that for the Boussinesq case except that, importantly, the density
basic state is now a (given) function of vertical coordinate. As with the Boussinesq case,
the idea is to ignore dynamic variations of density (i.e., of δρ) except where associated with
gravity. First recall a couple of ideal gas relationships involving potential temperature, θ,
and entropy s (divided by cp , so s ≡ logθ), namely

s ≡ logθ = logT − R
cp

logp = 1

γ
logp − logρ, (2.119)

where γ = cp/cv , implying

δs = 1

θ
δθ = 1

γ
δp
p
− δρ
ρ
≈ 1

γ
δp
p̃
− δρ
ρ̃
. (2.120)

Further, if s̃ ≡ γ−1 log p̃ − log ρ̃ then

ds̃
dz

= 1

γp̃
dp̃
dz

− 1

ρ̃
dρ̃
dz

= −gρ̃
γp̃

− 1

ρ̃
dρ̃
dz
. (2.121)

In the atmosphere, the left-hand side is, typically, much smaller than either of the two terms
on the right-hand side.

2.5.2 The momentum equation

The exact inviscid horizontal momentum equation is

(ρ̃ + ρ′)
(

Du
Dt

+ f × u
)
= −∇zδp. (2.122)

Neglecting ρ′ where it appears with ρ̃ leads to

Du
Dt

+ f × u = −∇zφ, (2.123)

where φ = δp/ρ̃, and this is similar to the corresponding equation in the Boussinesq
approximation.

The vertical component of the inviscid momentum equation is, without approximation,

(ρ̃ + δρ)Dw
Dt

= −∂p̃
∂z

− ∂δp
∂z

− gρ̃ − gδρ = −∂δp
∂z

− gδρ. (2.124)

using (2.118). Neglecting δρ on the left-hand side we obtain

Dw
Dt

= − 1

ρ̃
∂δp
∂z

− gδρ
ρ̃
= − ∂

∂z

(
δp
ρ̃

)
− δp
ρ̃2

∂ρ̃
∂z

− gδρ
ρ̃
. (2.125)

This is not a useful form for a gaseous atmosphere, since the variation of the mean density
cannot be ignored. However, we may eliminate δρ in favour of δs using (2.120) to give

Dw
Dt

= gδs − ∂
∂z

(
δp
ρ̃

)
− g
γ
δp
p̃
− δp
ρ̃2

∂ρ̃
∂z
, (2.126)
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and using (2.121) gives

Dw
Dt

= gδs − ∂
∂z

(
δp
ρ̃

)
+ ds̃

dz
δp
ρ̃
. (2.127)

What have these manipulations gained us? Two things:

(i) The gravitational term now involves δs rather than δρ which enables a more direct
connection with the thermodynamic equation.

(ii) The potential temperature scale height (∼100 km) in the atmosphere is much larger
than the density scale height (∼10 km), and so the last term in (2.127) is small.

The second item thus suggests that we choose our reference state to be one of constant
potential temperature (see also problem 2.19). The term ds̃/dz then vanishes and the
vertical momentum equation becomes

Dw
Dt

= gδs − ∂φ
∂z

, (2.128)

where φ = δp/ρ̃ and δs = δθ/θ0, where θ0 is a constant. If we define a buoyancy by ba ≡
gδs = gδθ/θ0, then (2.123) and (2.128) have the same form as the Boussinesq momentum
equations, but with a slightly different definition of buoyancy.

2.5.3 Mass conservation

Using (2.117a) the mass conservation equation may be written, without approximation, as

∂δρ
∂t

+∇ · [(ρ̃ + δρ)v] = 0. (2.129)

We neglect δρ where it appears with ρ̃ in the divergence term. Further, the local time
derivative will be small if time itself is scaled advectively (i.e., T ∼ L/U and sound waves
do not dominate), giving

∇ · u+ 1

ρ̃
∂
∂z
(ρ̃w) = 0. (2.130)

It is here that the eponymous ‘anelastic approximation’ arises: the elastic compressibility of
the fluid is neglected, and this serves to eliminate sound waves. For reference, in spherical
coordinates the equation is

1

a cosϑ
∂u
∂λ

+ 1

a cosϑ
∂
∂ϑ
(v cosϑ)+ 1

ρ̃
∂(wρ̃)
∂z

= 0. (2.131)

In an ideal gas, the choice of constant potential temperature determines how the reference
density ρ̃ varies with height. In some circumstances it is convenient to let ρ̃ be a constant,
ρ0 (effectively choosing a different equation of state), in which case the anelastic equations
become identical to the Boussinesq equations, albeit with the buoyancy interpreted in terms
of potential temperature in the former and density in the latter. Because of their similarity,
the Boussinesq and anelastic approximations are sometimes referred to as the strong and
weak Boussinesq approximations, respectively.
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2.5.4 Thermodynamic equation

The thermodynamic equation for an ideal gas may be written

D lnθ
Dt

= Q̇
Tcp

. (2.132)

In the anelastic equations, θ = θ̃ + δθ, where θ̃ is constant, and the thermodynamic equa-
tion is

Dδs
Dt

= θ̃
Tcp

Q̇. (2.133)

Summarizing, the complete set of anelastic equations, with rotation but with no dissipation
or diabatic terms, is

Dv
Dt

+ 2Ω× v = kba −∇φ

Dba
Dt

= 0

∇ · (ρ̃v) = 0

, (2.134a,b,c)

where ba = gδs = gδθ/θ̃. The main difference between the anelastic and Boussinesq
sets of equations is in the mass continuity equation, and when ρ̃ = ρ0 = constant the two
equation sets are formally identical. However, whereas the Boussinesq approximation is a
very good one for ocean dynamics, the anelastic approximation is much less so for large-
scale atmosphere flow: the constancy of the reference potential temperature state is not
a particularly good approximation, and the deviations in density from its reference profile
are not especially small, leading to inaccuracies in the momentum equation. Nevertheless,
the anelastic equations have been used very productively in limited area ‘large-eddy simu-
lations’ where one does not wish to make the hydrostatic approximation but where sound
waves are unimportant.7 The equations also provide a good jumping-off point for theoreti-
cal studies and for the still simpler models of chapter 5.

2.5.5 * Energetics of the anelastic equations

Conservation of energy follows in much the same way as for the Boussinesq equations,
except that ρ̃ enters. Take the dot product of (2.134a) with ρ̃v to obtain

ρ̃
D

Dt

(
1

2
v2
)
= −∇ · (φρ̃v)+ baρ̃w. (2.135)

Now, define a potential Φ(z) such that ∇Φ = −k, and so

ρ̃
DΦ
Dt

= −wρ̃. (2.136)

Combining this with the thermodynamic equation (2.134b) gives

ρ̃
D(baΦ)

Dt
= −wbaρ̃. (2.137)
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Adding this to (2.135) gives

ρ̃
D

Dt

(
1

2
v2 + baΦ

)
= −∇ · (φρ̃v), (2.138)

or, expanding the material derivative,

∂
∂t

[
ρ̃
(

1

2
v2 + baΦ

)]
+∇ ·

[
ρ̃v

(
1

2
v2 + baΦ +φ

)]
= 0. (2.139)

This equation has the form
∂E
∂t
+∇ ·

[
v(E + ρ̃φ)

]
= 0, (2.140)

where E = ρ̃(v2/2 + baΦ) is the energy density of the flow. This is a consistent energetic
equation for the system, and when integrated over a closed domain the total energy is
evidently conserved. The total energy density comprises the kinetic energy and a term
ρ̃baΦ, which is analogous to the potential energy of a simple Boussinesq system. However,
it is not exactly equal to potential energy because ba is the buoyancy based on potential
temperature, not density; rather, the term combines contributions from both the internal
energy and the potential energy into an enthalpy-like quantity.

2.6 CHANGING VERTICAL COORDINATE

Although using z as a vertical coordinate is a natural choice given our Cartesian worldview,
it is not the only option, nor is it always the most useful one. Any variable that has a
one-to-one correspondence with z in the vertical, so any variable that varies monotonically
with z, could be used; pressure and, perhaps surprisingly, entropy, are common choices.
In the atmosphere pressure almost always falls monotonically with height, and using it
instead of z provides a useful simplification of the mass conservation and geostrophic
relations, as well as a more direct connection with observations, which are often taken at
fixed values of pressure. (In the ocean pressure coordinates are essentially almost the same
as height coordinates, because density is almost constant.) Entropy seems an exotic vertical
coordinate, but it is very useful in adiabatic flow and we consider it in chapter 3.

2.6.1 General relations

First consider a general vertical coordinate, ξ. Any variable Ψ that is a function of the
coordinates (x,y, z, t) may be expressed instead in terms of (x,y, ξ, t) by considering
z to be function of the independent variables (x,y, ξ, t); that is, we let Ψ(x,y, ξ, t) =
Ψ(x,y, z(x,y, ξ, t), t). Derivatives with respect to z and ξ are related by

∂Ψ
∂ξ

= ∂Ψ
∂z
∂z
∂ξ

and
∂Ψ
∂z

= ∂Ψ
∂ξ
∂ξ
∂z
. (2.141a,b)

Horizontal derivatives in the two coordinate systems are related by the chain rule,(
∂Ψ
∂x

)
ξ
=
(
∂Ψ
∂x

)
z
+
(
∂z
∂x

)
ξ

∂Ψ
∂z
, (2.142)

and similarly for time.
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The material derivative in ξ coordinates may be derived by transforming the expression
in z coordinates using the above expressions (problem 2.22). However, because (x,y, t, ξ)
are independent coordinates, and noting that the ‘vertical velocity’ in ξ coordinates is just
ξ̇ (i.e., Dξ/Dt, just as the vertical velocity in z coordinates is w = Dz/Dt), we can write
down

DΨ
Dt

= ∂Ψ
∂t

+ u · ∇ξΨ + ξ̇
∂Ψ
∂ξ
, (2.143)

where ∇ξ is the gradient operator at constant ξ. The operator D/Dt is physically the same
in z or ξ coordinates because it is the total derivative of some property of a fluid parcel,
and this is independent of the coordinate system. However, the individual terms within it
will differ between coordinate systems.

2.6.2 Pressure coordinates

Let us now transform the ideal gas primitive equations from height coordinates to pressure
coordinates, (x,y,p, t). In z coordinates the equations are

Du
Dt

+ f × u = − 1

ρ
∇p, ∂p

∂z
= −ρg, (2.144a)

Dθ
Dt

= 0,
Dρ
Dt

+ ρ∇ · v = 0, (2.144b)

where p = ρRT and θ = T
(
pR/p

)R/cp , and pR is the reference pressure. These are respec-
tively the horizontal momentum, hydrostatic, thermodynamic and mass continuity equa-
tions. The analogue of the vertical velocity is ω ≡ Dp/Dt, and the advective derivative
itself is given by

D

Dt
= ∂
∂t
+ u · ∇p +ω

∂
∂p
. (2.145)

To obtain an expression for the pressure force, now let ξ = p in (2.142) and apply the
relationship to p itself to give

0 =
(
∂p
∂x

)
z
+
(
∂z
∂x

)
p

∂p
∂z
, (2.146)

which, using the hydrostatic relationship, gives(
∂p
∂x

)
z
= ρ

(
∂Φ
∂x

)
p
, (2.147)

where Φ = gz is the geopotential. Thus, the horizontal pressure force in the momentum
equations is

1

ρ
∇zp = ∇pΦ, (2.148)

where the subscripts on the gradient operator indicate that the horizontal derivatives are
taken at constant z or constant p. Also, from (2.144a), the hydrostatic equation is just

∂Φ
∂p

= −α. (2.149)
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The mass conservation equation simplifies attractively in pressure coordinates, if the
hydrostatic approximation is used. Recall that the mass conservation equation can be de-
rived from the material form

D

Dt
(ρ δV) = 0, (2.150)

where δV = δx δy δz is a volume element. But by the hydrostatic relationship ρδz =
(1/g)δp and thus

D

Dt
(δx δy δp) = 0. (2.151)

This is completely analogous to the expression for the material conservation of volume in
an incompressible fluid, (1.15). Thus, without further ado, we write the mass conservation
in pressure coordinates as

∇p · u+
∂ω
∂p

= 0, (2.152)

where the horizontal derivative is taken at constant pressure. The primitive equations in
pressure coordinates, equivalent to (2.144) in height coordinates, are thus:

Du
Dt

+ f × u = −∇pΦ,
∂Φ
∂p

= −α

Dθ
Dt

= 0, ∇p · u+
∂ω
∂p

= 0

, (2.153)

where D/Dt is given by (2.145). The equation set is completed with the addition of the ideal
gas equation and the definition of potential temperature. These equations are isomorphic to
the hydrostatic general Boussinesq equations (see the shaded box on page 72) with z ↔ −p,
w ↔ −ω, φ ↔ Φ, b ↔ α, and an equation of state b = b(θ, z) ↔ α = α(θ,p). In an ideal
gas, for example, α = −(θR/pR)(pR/p)1/γ .

The main practical difficulty with the pressure-coordinate equations is the lower bound-
ary condition. Using

w ≡ Dz
Dt

= ∂z
∂t
+ u · ∇pz +ω

∂z
∂p
, (2.154)

and (2.149), the boundary condition of w = 0 at z = zs becomes

∂Φ
∂t

+ u · ∇pΦ −αω = 0 (2.155)

at p(x,y, zs , t). In theoretical studies, it is common to assume that the lower boundary
is in fact a constant pressure surface and simply assume that ω = 0, or sometimes the
condition ω = −α−1∂Φ/∂t is used. For realistic studies (with general circulation models,
say) the fact that the level z = 0 is not a coordinate surface must be properly accounted
for. For this reason, and especially if the lower boundary is uneven because of the pres-
ence of topography, so-called sigma coordinates are sometimes used, in which the vertical
coordinate is chosen so that the lower boundary is a coordinate surface. Sigma coordinates
may use height itself as a vertical measure (typical in oceanic applications) or use pressure
(typical in atmospheric applications). In the latter case the vertical coordinate is σ = p/ps
where ps(x,y, t) is the surface pressure. The difficulty of applying (2.155) is replaced by a
prognostic equation for the surface pressure, derived from the mass conservation equation
(problem 2.24).
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2.6.3 Log-pressure coordinates

A variant of pressure coordinates is log-pressure coordinates, in which the vertical coor-
dinate is Z = −H ln(p/pR) where pR is a reference pressure (say 1000 mb) and H is a
constant (for example the scale height RTs/g) so that Z has units of length. (Uppercase
letters are conventionally used for some variables in log-pressure coordinates, and these
are not to be confused with scaling parameters.) The ‘vertical velocity’ for the system is
now

W ≡ DZ
Dt
, (2.156)

and the advective derivative is

D

Dt
≡ ∂
∂t
+ u · ∇p +W

∂
∂Z
. (2.157)

It is straightforward to show (problem 2.25) that the primitive equations of motion in these
coordinates are:

Du
Dt

+ f × u = −∇ZΦ,
∂Φ
∂Z

= RT
H
, (2.158a)

Dθ
Dt

= 0,
∂u
∂x

+ ∂v
∂y

+ ∂W
∂Z

− W
H
= 0. (2.158b)

The last equation may be written ∇Z · u + ρ−1
R ∂(ρRW)/∂z = 0, where ρR = exp(−z/H),

so giving a form similar to the mass conservation equation in the anelastic equations. Note
that integrating the hydrostatic equation between two pressure levels gives, with Φ = gz,

z(p2)− z(p1) =
R
g

∫ p2

p1

T d lnp. (2.159)

Thus, the thickness of the layer is proportional to the average temperature of the layer.

2.7 SCALING FOR HYDROSTATIC BALANCE

In this section we consider one of the most fundamental balances in geophysical fluid dy-
namics, hydrostatic balance, and in the next section we consider another fundamental bal-
ance, geostrophic balance. The corresponding states, hydrostasy and geostrophy, are not
exactly realized, but their approximate satisfaction has profound consequences on the be-
haviour of the atmosphere and ocean. We first encountered hydrostatic balance in section
1.3.4; we now look in more detail at the conditions required for it to hold.

2.7.1 Preliminaries

Consider the relative sizes of terms in (2.77c):

W
T
+ UW
L

+ W
2

H
+ΩU ∼

∣∣∣∣∣ 1

ρ
∂p
∂z

∣∣∣∣∣+ g. (2.160)

For most large-scale motion in the atmosphere and ocean the terms on the right-hand side
are orders of magnitude larger than those on the left, and therefore must be approximately
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equal. Explicitly, suppose W ∼ 1 cm s−1, L ∼ 105 m, H ∼ 103 m, U ∼ 10 m s−1, T = L/U .
Then by substituting into (2.160) it seems that the pressure term is the only one which
could balance the gravitational term, and we are led to approximate (2.77c) by,

∂p
∂z

= −ρg. (2.161)

This equation, which is a vertical momentum equation, is known as hydrostatic balance.
However, (2.161) is not always a useful equation! Let us suppose that the density is a

constant, ρ0 . We can then write the pressure as

p(x,y, z, t) = p0(z)+ p′(x,y, z, t), (2.162)

where
∂p0

∂z
≡ −ρ0g. (2.163)

That is, p0 and ρ0 are in hydrostatic balance. The inviscid vertical momentum equation
becomes, without approximation,

Dw
Dt

= − 1

ρ0

∂p′

∂z
. (2.164)

Thus, for constant density fluids, the gravitational term has no dynamical effect: there is
no buoyancy force, and the pressure term in the horizontal momentum equations can be
replaced by p′. Hydrostatic balance, and in particular (2.163), is certainly not an appropri-
ate vertical momentum equation in this case. If the fluid is stratified, we should therefore
subtract off the hydrostatic pressure associated with the mean density before we can de-
termine whether hydrostasy is a useful dynamical approximation, accurate enough to de-
termine the horizontal pressure gradients. This is automatic in the Boussinesq equations,
where the vertical momentum equation is

Dw
Dt

= −∂φ
∂z

+ b, (2.165)

and the hydrostatic balance of the basic state is already subtracted out. In the more general
equation,

Dw
Dt

= − 1

ρ
∂p
∂z

− g, (2.166)

we need to compare the advective term on the left-hand side with the pressure variations
arising from horizontal flow in order to determine whether hydrostasy is an appropriate
vertical momentum equation. Nevertheless, if we only need to determine the pressure for
use in an equation of state then we simply need to compare the sizes of the dynamical
terms in (2.77c) with g itself, in order to determine whether a hydrostatic approximation
will suffice.

2.7.2 Scaling and the aspect ratio

In a Boussinesq fluid we write the horizontal and vertical momentum equations as

Du
Dt

+ f × u = −∇φ, Dw
Dt

= −∂φ
∂z

− b. (2.167a,b)
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With f = 0, (2.167a) implies the scaling

φ ∼ U2. (2.168)

If we use mass conservation, ∇z · u+ ∂w/∂z = 0, to scale vertical velocity then

w ∼ W = H
L
U = αU, (2.169)

where α ≡ H/L is the aspect ratio. The advective terms in the vertical momentum equation
all scale as

Dw
Dt

∼ UW
L

= U
2H
L2

. (2.170)

Using (2.168) and (2.170) the ratio of the advective term to the pressure gradient term in
the vertical momentum equations then scales as

|Dw/Dt|
|∂φ/∂z| ∼

U2H/L2

U2/H
∼
(
H
L

)2
. (2.171)

Thus, the condition for hydrostasy, that |Dw/Dt|/|∂φ/∂z| � 1, is:

α2 ≡
(
H
L

)2
� 1 . (2.172)

The advective term in the vertical momentum may then be neglected. Thus, hydrostatic
balance is a small aspect ratio approximation.

We can obtain the same result more formally by non-dimensionalizing the momentum
equations. Using uppercase symbols to denote scaling values we write

(x,y) = L(x̂, ŷ), z = Hẑ, u = Uû, w = Wŵ = HU
L
ŵ,

t = T t̂ = L
U
t̂, φ = Φφ̂ = U2φ̂, b = Bb̂ = U

2

H
b̂,

(2.173)

where the hatted variables are non-dimensional and the scaling for w is suggested by the
mass conservation equation, ∇z · u + ∂w/∂z = 0. Substituting (2.173) into (2.167) (with
f = 0) gives us the non-dimensional equations

Dû
Dt̂

= −∇φ̂, α2 Dŵ
Dt̂

= −∂φ̂
∂ẑ

− b̂, (2.174a,b)

where D/Dt̂ = ∂/∂t̂ + û∂/∂x̂ + v̂∂/∂ŷ + ŵ∂/∂ẑ and we use the convention that when
∇ operates on non-dimensional quantities the operator itself is non-dimensional. From
(2.174b) it is clear that hydrostatic balance pertains when α2 � 1.

2.7.3 * Effects of stratification on hydrostatic balance

To include the effects of stratification we need to involve the thermodynamic equation, so
let us first write down the complete set of non-rotating dimensional equations:

Du
Dt

= −∇zφ,
Dw
Dt

= −∂φ
∂z

+ b′, (2.175a,b)



2.7 Scaling for Hydrostatic Balance 83

Db′

Dt
+wN2 = 0, ∇ · v = 0. (2.176a,b)

We have written, without approximation, b = b′(x,y, z, t) + b̃(z), with N2 = db̃/dz ; this
separation is useful because the horizontal and vertical buoyancy variations may scale in
different ways, and often N2 may be regarded as given. (We have also redefined φ by
subtracting off a static component in hydrostatic balance with b̃.) We non-dimensionalize
(2.176) by first writing

(x,y) = L(x̂, ŷ), z = Hẑ, u = Uû, w = Wŵ = εHU
L
ŵ,

t = T t̂ = L
U
t̂, φ = U2φ̂, b′ = ∆bb̂ = U

2

H
b̂′, N2 = N2N̂2,

(2.177)

where ε is, for the moment, undetermined, N is a representative, constant, value of the
buoyancy frequency and ∆b scales only the horizontal buoyancy variations. Substituting
(2.177) into (2.175) and (2.176) gives

Dû
Dt̂

= −∇zφ̂, εα2 Dŵ
Dt

= −∂φ̂
∂ẑ

+ b̂′ (2.178a,b)

U2

N2H2

Db̂′

Dt̂
+ εŵN̂2 = 0, ∇ · û+ ε∂ŵ

∂ẑ
= 0. (2.179a,b)

where now D/Dt̂ = ∂/∂t̂ + û · ∇z + ε∂/∂ẑ . To obtain a non-trivial balance in (2.179a) we
choose ε = U2/(N2H2) ≡ Fr2, where Fr is the Froude number, a measure of the stratifica-
tion of the flow. The vertical velocity then scales as

W = Fr UH
L

(2.180)

and if the flow is highly stratified the vertical velocity will be even smaller than a pure aspect
ratio scaling might suggest. (There must, therefore, be some cancellation in horizontal
divergence in the mass continuity equation; that is, |∇z · u| � U/L.) With this choice of ε
the non-dimensional Boussinesq equations may be written:

Dû
Dt̂

= −∇zφ̂, Fr2α2 Dŵ
Dt̂

= −∂φ̂
∂ẑ

+ b̂′ (2.181a,b)

Db̂′

Dt̂
+ ŵN̂2 = 0, ∇ · û+ Fr2 ∂ŵ

∂ẑ
= 0. (2.182a,b)

The non-dimensional parameters in the system are the aspect ratio and the Froude number
(in addition to N̂ , but by construction this is just an order one function of z). From (2.181b)
condition for hydrostatic balance to hold is evidently that

Fr2α2 � 1 , (2.183)

so generalizing the aspect ratio condition (2.172) to a stratified fluid. Because Fr is a mea-
sure of stratification, (2.183) formalizes our intuitive expectation that the more stratified
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a fluid the more vertical motion is suppressed and therefore the more likely hydrostatic
balance is to hold. Also note that (2.183) is equivalent to U2/(L2N2)� 1.

Suppose we solve the hydrostatic equations; that is, we omit the advective derivative
in the vertical momentum equation, and by numerical integration we obtain u, w and b.
This flow is the solution of the non-hydrostatic equations in the small aspect ratio limit.
The solution never violates the scaling assumptions, even if w seems large, because we can
always rescale the variables in order that condition (2.183) is satisfied.

Why bother with any of this scaling? Why not just say that hydrostatic balance holds
when |Dw/Dt| � |∂φ/∂z|? One reason is that we do not have a good idea of the value
of w from direct measurements, and it may change significantly in different oceanic and
atmospheric parameter regimes. On the other hand the Froude number and the aspect
ratio are familiar non-dimensional parameters with a wide applicability in other contexts,
and which we can control in a laboratory setting or estimate in the ocean or atmosphere.
Still, in scaling theory it is common that ascertaining which parameters are to be regarded
as given and which should be derived is a choice, rather than being set a priori.

2.7.4 Hydrostasy in the ocean and atmosphere

Is the hydrostatic approximation in fact a good one in the ocean and atmosphere?

In the ocean

For the large-scale ocean circulation, let N ∼ 10−2 s−1, U ∼ 0.1 m s−1 and H ∼ 1 km. Then
Fr = U/(NH) ∼ 10−2 � 1. Thus, Fr2α2 � 1 even for unit aspect-ratio motion. In fact, for
larger scale flow the aspect ratio is also small; for basin-scale flow L ∼ 106 m and Fr2α2 ∼
0.012 × 0.0012 = 10−10 and hydrostatic balance is an extremely good approximation.

For intense convection, for example in the Labrador Sea, the hydrostatic approximation
may be less appropriate, because the intense descending plumes may have an aspect ratio
(H/L) of one or greater and the stratification is very weak. The hydrostatic condition then
often becomes the requirement that the Froude number is small. Representative orders of
magnitude are U ∼ W ∼ 0.1 m s−1, H ∼ 1 km and N ∼ 10−3 s−1 to 10−4 s−1. For these
values Fr ranges between 0.1 and 1, and at the upper end of this range hydrostatic balance
is violated.

In the atmosphere

Over much of the troposphere N ∼ 10−2 s−1 so that with U = 10 m s−1 and H = 1 km we
find Fr ∼ 1. Hydrostasy is then maintained because the aspect ratio H/L is much less than
unity. For larger scale synoptic activity a larger vertical scale is appropriate, and with H =
10 km both the Froude number and the aspect ratio are much smaller than one; indeed with
L = 1000 km we find Fr2α2 ∼ 0.12 × 0.12 = 10−4 and the flow is hydrostatic to a very good
approximation indeed. However, for smaller scale atmospheric motions associated with
fronts and, especially, convection, there can be little expectation that hydrostatic balance
will be a good approximation.

For large-scale flows in both atmosphere and ocean, the conceptual simplifications af-
forded by the hydrostatic approximation can hardly be overemphasized.
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Variable Scaling Meaning Atmos. value Ocean value
symbol

(x,y) L Horizontal length scale 106 m 105 m
t T Time scale 1 day (105 s) 10 days (106 s)

(u,v) U Horizontal velocity 10 m s−1 0.1 m s−1

Ro Rossby number, U/fL 0.1 0.01

Table 2.1 Scales of large-scale flow in atmosphere and ocean. The choices given are
representative of large-scale eddying motion in both systems.

2.8 GEOSTROPHIC AND THERMAL WIND BALANCE

We now consider the dominant dynamical balance in the horizontal components of the
momentum equation. In the horizontal plane (meaning along geopotential surfaces) we find
that the Coriolis term is much larger than the advective terms and the dominant balance
is between it and the horizontal pressure force. This balance is called geostrophic balance,
and it occurs when the Rossby number is small, as we now investigate.

2.8.1 The Rossby number

The Rossby number characterizes the importance of rotation in a fluid.8 It is, essentially,
the ratio of the magnitude of the relative acceleration to the Coriolis acceleration, and it is
of fundamental importance in geophysical fluid dynamics. It arises from a simple scaling
of the horizontal momentum equation, namely

∂u
∂t
+(v · ∇)u+ f × u = − 1

ρ
∇zp, (2.184a)

U2/L fU (2.184b)

where U is the approximate magnitude of the horizontal velocity and L is a typical length
scale over which that velocity varies. (We assume that W/H Ü U/L, so that vertical advec-
tion does not dominate the advection.) The ratio of the sizes of the advective and Coriolis
terms is defined to be the Rossby number,

Ro ≡ U
fL

. (2.185)

If the Rossby number is small then rotation effects are important, and as the values in Table
2.1 indicate this is the case for large-scale flow in both ocean and atmosphere.

Another intuitive way to think about the Rossby number is in terms of time scales. The
Rossby number based on a time scale is

RoT ≡
1

fT
, (2.186)
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where T is a time scale associated with the dynamics at hand. If the time scale is an
advective one, meaning that T ∼ L/U , then this definition is equivalent to (2.185). Now,
f = 2Ω sinϑ, whereΩ is the angular velocity of the rotating frame and equal to 2π sinϑ/Tp
where Tp is the period of rotation (24 hours). Thus,

RoT =
Tp

4πT sinϑ
= Ti
T
, (2.187)

where Ti = 1/f is the ‘inertial time scale’, about three hours in mid-latitudes. Thus, for
phenomena with time scales much longer than this, such as the motion of the Gulf Stream
or a mid-latitude atmospheric weather system, the effects of the Earth’s rotation can be
expected to be important, whereas a short-lived phenomena, such as a cumulus cloud or
tornado, may be oblivious to such rotation. The expressions (2.185) and (2.186) of course,
just approximate measures of the importance of rotation.

2.8.2 Geostrophic balance

If the Rossby number is sufficiently small in (2.184a) then the rotation term will dominate
the nonlinear advection term, and if the time period of the motion scales advectively then
the rotation term also dominates the local time derivative. The only term that can then
balance the rotation term is the pressure term, and therefore we must have

f × u ≈ − 1

ρ
∇zp, (2.188)

or, in Cartesian component form

fu ≈ − 1

ρ
∂p
∂y
, fv ≈ 1

ρ
∂p
∂x
. (2.189)

This balance is known as geostrophic balance, and its consequences are profound, giving
geophysical fluid dynamics a special place in the broader field of fluid dynamics. We define
the geostrophic velocity by

fug ≡ −
1

ρ
∂p
∂y
, fvg ≡

1

ρ
∂p
∂x

, (2.190)

and for low Rossby number flow u ≈ ug and v ≈ vg . In spherical coordinates the
geostrophic velocity is

fug = −
1

ρa
∂p
∂ϑ
, fvg =

1

aρ cosϑ
∂p
∂λ
, (2.191)

where f = 2Ω sinϑ. Geostrophic balance has a number of immediate ramifications:

? Geostrophic flow is parallel to lines of constant pressure (isobars). If f > 0 the flow
is anticlockwise round a region of low pressure and clockwise around a region of high
pressure (see Fig. 2.5).



2.8 Geostrophic and Thermal Wind Balance 87

Fig. 2.5 Schematic of geostrophic flow with a positive value of the Coriolis parameter
f . Flow is parallel to the lines of constant pressure (isobars). Cyclonic flow is anti-
clockwise around a low pressure region and anticyclonic flow is clockwise around a
high. If f were negative, as in the Southern Hemisphere, (anti)cyclonic flow would
be (anti)clockwise.

? If the Coriolis force is constant and if the density does not vary in the horizontal the
geostrophic flow is horizontally non-divergent and

∇z · ug =
∂ug
∂x

+ ∂vg
∂y

= 0 . (2.192)

We may define the geostrophic streamfunction, ψ, by

ψ ≡ p
f0ρ0

, (2.193)

whence

ug = −
∂ψ
∂y
, vg =

∂ψ
∂x
. (2.194)

The vertical component of vorticity, ζ, is then given by

ζ = k · ∇× v = ∂v
∂x

− ∂u
∂y

= ∇2
zψ. (2.195)

? If the Coriolis parameter is not constant, then cross-differentiating (2.190) gives, for
constant density geostrophic flow,

vg
∂f
∂y

+ f∇z · ug = 0, (2.196)

which implies, using mass continuity,

βvg = f
∂w
∂z
. (2.197)



88 Chapter 2. Effects of Rotation and Stratification

where β ≡ ∂f/∂y = 2Ω cosϑ/a. This geostrophic vorticity balance is sometimes
known as ‘Sverdrup balance’, although the latter expression is better restricted to the
case when the vertical velocity results from external agents, and specifically a wind
stress, as considered in chapter 14.

2.8.3 Taylor–Proudman effect

If β = 0, then (2.197) implies that the vertical velocity is not a function of height. In fact,
in that case none of the components of velocity vary with height if density is also con-
stant. To show this, in the limit of zero Rossby number we first write the three-dimensional
momentum equation as

f0 × v = −∇φ−∇χ, (2.198)

where f0 = 2Ω = 2Ωk,φ = p/ρ0, and∇χ represents other potential forces. If χ = gz then
the vertical component of this equation represents hydrostatic balance, and the horizontal
components represent geostrophic balance. On taking the curl of this equation, the terms
on the right-hand side vanish and the left-hand side becomes

(f0 · ∇)v − f0∇ · v − (v · ∇)f0 + v∇ · f0 = 0. (2.199)

But ∇ · v = 0 by mass conservation, and because f0 is constant both ∇ · f0 and (v · ∇)f0

vanish. Thus
(f0 · ∇)v = 0, (2.200)

which, since f0 = f0k, implies f0∂v/∂z = 0, and in particular we have

∂u
∂z

= 0,
∂v
∂z

= 0,
∂w
∂z

= 0. (2.201)

A different presentation of this argument proceeds as follows. If the flow is exactly in
geostrophic and hydrostatic balance then

v = 1

f0

∂φ
∂x
, u = − 1

f0

∂φ
∂y
,

∂φ
∂z

= −g. (2.202a,b,c)

Differentiating (2.202a,b) with respect to z, and using (2.202c) yields

∂v
∂z

= −1

f0

∂g
∂x

= 0,
∂u
∂z

= 1

f0

∂g
∂y

= 0. (2.203)

Noting that the geostrophic velocities are horizontally non-divergent (∇z ·u = 0), and using
mass continuity then gives ∂w/∂z = 0, as before.

If there is a solid horizontal boundary anywhere in the fluid, for example at the surface,
then w = 0 at that surface and thus w = 0 everywhere. Hence the motion occurs in planes
that lie perpendicular to the axis of rotation, and the flow is effectively two dimensional.
This result is known as the Taylor–Proudman effect, namely that for constant density flow
in geostrophic and hydrostatic balance the vertical derivatives of the horizontal and the
vertical velocities are zero.9 At zero Rossby number, if the vertical velocity is zero some-
where in the flow, it is zero everywhere in that vertical column; furthermore, the horizontal
flow has no vertical shear, and the fluid moves like a slab. The effects of rotation have
provided a stiffening of the fluid in the vertical.
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In neither the atmosphere nor the ocean do we observe precisely such vertically coher-
ent flow, mainly because of the effects of stratification. However, it is typical of geophys-
ical fluid dynamics that the assumptions underlying a derivation are not fully satisfied,
yet there are manifestations of it in real flow. Thus, one might have naïvely expected,
because ∂w/∂z = −∇z · u, that the scales of the various variables would be related by
W/H ∼ U/L. However, if the flow is rapidly rotating we expect that the horizontal flow will
be in near geostrophic balance and therefore nearly divergence free; thus ∇z · u � U/L,
and W � HU/L.

2.8.4 Thermal wind balance

Thermal wind balance arises by combining the geostrophic and hydrostatic approximations,
and this is most easily done in the context of the anelastic (or Boussinesq) equations, or in
pressure coordinates. For the anelastic equations, geostrophic balance may be written

−fvg = −
∂φ
∂x

= − 1

a cosϑ
∂φ
∂λ
, fug = −

∂φ
∂y

= − 1

a
∂φ
∂ϑ
. (2.204a,b)

Combining these relations with hydrostatic balance, ∂φ/∂z = b, gives

−f ∂vg
∂z

= − ∂b
∂x

= − 1

a cosλ
∂b
∂λ

f
∂ug
∂z

= − ∂b
∂y

= − 1

a
∂b
∂ϑ

. (2.205a,b)

These equations represent thermal wind balance, and the vertical derivative of the geo-
strophic wind is the ‘thermal wind’. Eq. (2.205b) may be written in terms of the zonal
angular momentum as

∂mg

∂z
= − a

2Ω tanϑ
∂b
∂y
, (2.206)

where mg = (ug +Ωa cosϑ)a cosϑ. Potentially more accurate than geostrophic balance
is the so-called cyclostrophic or gradient-wind balance, which retains a centrifugal term
in the momentum equation. Thus, we omit only the material derivative in the meridional
momentum equation (2.50b) and obtain

2uΩ sinϑ + u
2

a
tanϑ ≈ −∂φ

∂y
= − 1

a
∂φ
∂ϑ
. (2.207)

For large-scale flow this only differs significantly from geostrophic balance very close to the
equator. Combining cyclostrophic and hydrostatic balance gives a modified thermal wind
relation, and this takes a simple form when expressed in terms of angular momentum,
namely

∂m2

∂z
≈ −a

3 cos3 ϑ
sinϑ

∂b
∂y
. (2.208)

If the density or buoyancy is constant then there is no shear and (2.205) or (2.208)
give the Taylor–Proudman result. But suppose that the temperature falls in the poleward
direction. Then thermal wind balance implies that the (eastward) wind will increase with
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-

-

Fig. 2.6 The mechanism of thermal wind. A cold fluid is denser than a warm fluid, so
by hydrostasy the vertical pressure gradient is greater where the fluid is cold. Thus,
the pressure gradients form as shown, where ‘higher’ and ‘lower’ mean relative to
the average at that height. The horizontal pressure gradients are balanced by the
Coriolis force, producing (for f > 0) the horizontal winds shown (⊗ into the paper,
and � out of the paper). Only the wind shear is given by the thermal wind.

height — just as is observed in the atmosphere! In general, a vertical shear of the horizontal
wind is associated with a horizontal temperature gradient, and this is one of the most
simple and far-reaching effects in geophysical fluid dynamics. The underlying physical
mechanism is illustrated in Fig. 2.6.

Pressure coordinates

In pressure coordinates geostrophic balance is just

f × ug = −∇pΦ, (2.209)

where Φ is the geopotential and∇p is the gradient operator taken at constant pressure. If f
if constant, it follows from (2.209) that the geostrophic wind is non-divergent on pressure
surfaces. Taking the vertical derivative of (2.209) (that is, its derivative with respect to p)
and using the hydrostatic equation, ∂Φ/∂p = −α, gives the thermal wind equation

f × ∂ug
∂p

= ∇pα =
R
p
∇pT , (2.210)

where the last equality follows using the ideal gas equation and because the horizontal
derivative is at constant pressure. In component form this is

−f ∂vg
∂p

= R
p
∂T
∂x
, f

∂ug
∂p

= R
p
∂T
∂y
. (2.211)

In log-pressure coordinates, with Z = −H ln(p/pR), thermal wind is

f × ∂ug
∂Z

= −R
H
∇ZT . (2.212)
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The physical meaning in all these cases is the same: a horizontal temperature gradient, or
a temperature gradient along an isobaric surface, is accompanied by a vertical shear of the
horizontal wind.

2.8.5 * Effects of rotation on hydrostatic balance

Because rotation inhibits vertical motion, we might expect it to affect the requirements for
hydrostasy. The simplest setting in which to see this is the rotating Boussinesq equations,
(2.167). Let us non-dimensionalize these by writing

(x,y) = L(x̂, ŷ), z = Hẑ, u = Uû, t = T t̂ = U
L
t̂, f = f0f̂ ,

w = βHU
f0

ŵ = β̂HU
L
ŵ, φ = Φφ̂ = f0ULφ̂, b = Bb̂ = f0uL

H
b̂,

(2.213)

where β̂ ≡ βL/f0. (If f is constant, then f̂ is a unit vector in the vertical direction.) These
relations are the same as (2.173), except for the scaling forw , which is suggested by (2.197),
and the scaling forφ and b′, which are suggested by geostrophic and thermal wind balance.

Substituting into (2.167) we obtain the following scaled momentum equations:

Ro
Dû
Dt̂

+ f̂ × û = −∇φ̂, Ro β̂α2 Dŵ
Dt̂

= −∂φ
∂z

− b̂ . (2.214a,b)

Here, D/Dt̂ = ∂/∂t̂ + û · ∇z + β̂∂/∂ẑ and Ro = U/(f0L). There are two notable aspects to
these equations. First and most obviously, when Ro � 1, (2.214a) reduces to geostrophic
balance, f × u = −∇φ̂. Second, the material derivative in (2.214b) is multiplied by three
non-dimensional parameters, and we can understand the appearance of each as follows.

(i) The aspect ratio dependence (α2) arises in the same way as for non-rotating flows —
that is, because of the presence of w and z in the vertical momentum equation as
opposed to (u,v) and (x,y) in the horizontal equations.

(ii) The Rossby number dependence (Ro) arises because in rotating flow the pressure gradi-
ent is balanced by the Coriolis force, which is Rossby number larger than the advective
terms.

(iii) The factor β̂ arises because in rotating flow w is smaller than u by the β̂ times the
aspect ratio.

The factor Ro β̂α2 is very small for large-scale flow; the reader is invited to calculate rep-
resentative values. Evidently, a rapidly rotating fluid is more likely to be in hydrostatic
balance than a non-rotating fluid, other conditions being equal. The combined effects of
rotation and stratification are, not surprisingly, quite subtle and we leave that topic for
chapter 5.

2.9 STATIC INSTABILITY AND THE PARCEL METHOD

In this and the next couple of sections we consider how a fluid might oscillate if it were per-
turbed away from a resting state. Our focus is on vertical displacements, and the restoring
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force is gravity, and we will neglect the effects of rotation, and indeed initially we will ne-
glect horizontal motion entirely. Given that, the simplest and most direct way to approach
the problem is to consider from first principles the pressure and gravitational forces on a
displaced parcel. To this end, consider a fluid at rest in a constant gravitational field, and
therefore in hydrostatic balance. Suppose that a small parcel of the fluid is adiabatically dis-
placed upwards by the small distance δz, without altering the overall pressure field; that is,
the fluid parcel instantly assumes the pressure of its environment. If after the displacement
the parcel is lighter than its environment, it will accelerate upwards, because the upward
pressure gradient force is now greater than the downward gravity force on the parcel; that
is, the parcel is buoyant (a manifestation of Archimedes’ principle) and the fluid is statically
unstable. If on the other hand the fluid parcel finds itself heavier than its surroundings, the
downward gravitational force will be greater than the upward pressure force and the fluid
will sink back towards its original position and an oscillatory motion will develop. Such an
equilibrium is statically stable. Using such simple ‘parcel’ arguments we will now develop
criteria for the stability of the environmental profile.

2.9.1 A simple special case: a density-conserving fluid

Consider first the simple case of an incompressible fluid in which the density of the dis-
placed parcel is conserved, that is Dρ/Dt = 0 (and refer to Fig. 2.7 setting ρθ = ρ). If the
environmental profile is ρ̃(z) and the density of the parcel is ρ then a parcel displaced
from a level z [where its density is ρ̃(z)] to a level z + δz [where the density of the parcel
is still ρ̃(z)] will find that its density then differs from its surroundings by the amount

δρ = ρ(z + δz)− ρ̃(z + δz) = ρ̃(z)− ρ̃(z + δz) = −∂ρ̃
∂z
δz. (2.215)

The parcel will be heavier than its surroundings, and therefore the parcel displacement will
be stable, if ∂ρ̃/∂z < 0. Similarly, it will be unstable if ∂ρ̃/∂z > 0. The upward force (per
unit volume) on the displaced parcel is given by

F = −gδρ = g∂ρ̃
∂z
δz, (2.216)

and thus Newton’s second law implies that the motion of the parcel is determined by

ρ(z)
∂2δz
∂t2

= g∂ρ̃
∂z
δz, (2.217)

or
∂2δz
∂t2

= g
ρ̃
∂ρ̃
∂z
δz = −N2δz, (2.218)

where

N2 = −g
ρ̃
∂ρ̃
∂z

(2.219)

is the buoyancy frequency, or the Brunt–Väisälä frequency, for this problem. If N2 > 0
then a parcel displaced upward is heavier than its surroundings, and thus experiences a
restoring force; the density profile is said to be stable and N is the frequency at which the
fluid parcel oscillates. If N2 < 0, the density profile is unstable and the parcel continues to
ascend and convection ensues. In liquids it is often a good approximation to replace ρ̃ by
ρ0 in the denominator of (2.219).
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Fig. 2.7 A parcel is adiabatically dis-
placed upward from level z to z + δz,
preserving its potential density, which
it takes from the environment at level
z. If z + δz is the reference level, the
potential density there is equal to the
actual density. The parcel’s stability is
determined by the difference between
its density and the environmental den-
sity [see (2.220)]; if the difference is
positive the displacement is stable, and
conversely.

2.9.2 The general case: using potential density

More generally, in an adiabatic displacement it is potential density, ρθ , and not density itself
that is materially conserved. Consider a parcel that is displaced adiabatically a vertical
distance from z to z + δz; the parcel preserves its potential density, and let us use the
pressure at level z + δz as the reference level. The in situ density of the parcel at z +
δz, namely ρ(z + δz), is then equal to its potential density ρθ(z + δz) and, because ρθ
is conserved, this is equal to the potential density of the environment at z, ρ̃θ(z). The
difference in in situ density between the parcel and the environment at z + δz, δρ, is thus
equal to the difference between the potential density of the environment at z and at z+δz.
Putting this together (and see Fig. 2.7) we have

δρ = ρ(z + δz)− ρ̃(z + δz) = ρθ(z + δz)− ρ̃θ(z + δz)
= ρθ(z)− ρ̃θ(z + δz) = ρ̃θ(z)− ρ̃θ(z + δz),

(2.220)

and therefore

δρ = −∂ρ̃θ
∂z
δz, (2.221)

where the derivative on the right-hand side is the environmental gradient of potential den-
sity. If the right-hand side is positive, the parcel is heavier than its surroundings and the
displacement is stable. Thus, the conditions for stability are:

stability :
∂ρ̃θ
∂z

< 0

instability :
∂ρ̃θ
∂z

> 0

. (2.222a,b)

That is, the stability of a parcel of fluid is determined by the gradient of the locally-referenced
potential density. The equation of motion of the fluid parcel is

∂2δz
∂t2

= g
ρ

(
∂ρ̃θ
∂z

)
δz = −N2δz, (2.223)
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where, noting that ρ(z) = ρ̃θ(z) to within O(δz),

N2 = − g
ρ̃θ

(
∂ρ̃θ
∂z

)
. (2.224)

This is a general expression for the buoyancy frequency, true in both liquids and gases. It
is important to realize that the quantity ρ̃θ is the locally-referenced potential density of the
environment, as will become more clear below.

An ideal gas

In the atmosphere potential density is related to potential temperature by ρθ = pR/(θR).
Using this in (2.224) gives

N2 = g
θ̃

(
∂θ̃
∂z

)
, (2.225)

where θ̃ refers to the environmental profile of potential temperature. The reference value
pR does not appear, and we are free to choose this value arbitrarily — the surface pressure
is a common choice. The conditions for stability, (2.222), then correspond to N2 > 0 for
stability and N2 < 0 for instability. In the troposphere (the lowest several kilometres of
the atmosphere) the average N is about 0.01 s−1, with a corresponding period, (2π/N), of
about 10 minutes. In the stratosphere (which lies above the troposphere) N2 is a few times
higher than this.

A liquid ocean

No simple, accurate, analytic expression is available for computing static stability in the
ocean. If the ocean had no salt, then the potential density referenced to the surface would
generally be a measure of the sign of stability of a fluid column, if not of the buoyancy fre-
quency. However, in the presence of salinity, the surface-referenced potential density is not
necessarily even a measure of the sign of stability, because the coefficients of compressibil-
ity βT and βS vary in different ways with pressure. To see this, suppose two neighbouring
fluid elements at the surface have the same potential density, but different salinities and
temperatures, and displace them both adiabatically to the deep ocean. Although their po-
tential densities (referenced to the surface) are still equal, we can say little about their actual
densities, and hence their stability relative to each other, without doing a detailed calcula-
tion because they will each have been compressed by different amounts. It is the profile of
the locally-referenced potential density that determines the stability.

An approximate expression for stability that is sometimes useful arises by noting that
in an adiabatic displacement

δρθ = δρ −
1

c2
s
δp = 0. (2.226)

If the fluid is hydrostatic δp = −ρgδz so that if a parcel is displaced adiabatically its
density changes according to (

∂ρ
∂z

)
ρθ
= −ρg

c2
s
. (2.227)
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and so, if T and Lc are assumed to be constant,

θeq = θ exp

(
Lcw
cpT

)
. (2.243)

The equivalent potential temperature so defined is approximately conserved during con-
densation, the approximation arising going from (2.242) to (2.243). It is a useful expression
for diagnostic purposes, and in constructing theories of convection, but it is not accurate
enough to use as a prognostic variable in a putatively realistic numerical model. The ‘equiv-
alent temperature’ may be defined in terms of the equivalent potential temperature by

Teq ≡ θeq

(
p
pR

)κ
. (2.244)

2.10 GRAVITY WAVES

The parcel approach to oscillations and stability, while simple and direct, is divorced from
the fluid-dynamical equations of motion, making it hard to include other effects such as
rotation, or to explore the effects of possible differences between the hydrostatic and non-
hydrostatic cases. To remedy this, we now use the equations of motion to analyse the
motion resulting from a small disturbance.

2.10.1 Gravity waves and convection in a Boussinesq fluid

Let us consider a Boussinesq fluid, at rest, in which the buoyancy varies linearly with height
and the buoyancy frequency, N , is a constant. Linearizing the equations of motion about
this basic state gives the linear momentum equations,

∂u′

∂t
= −∂φ

′

∂x
,

∂w′

∂t
= −∂φ

′

∂z
+ b′, (2.245a,b)

the mass continuity and thermodynamic equations,

∂u′

∂x
+ ∂w

′

∂z
= 0,

∂b′

∂t
+w′N2 = 0, (2.246a,b)

where for simplicity we assume that the flow is a function only of x and z. A little algebra
gives a single equation for w′,[(

∂2

∂x2
+ ∂2

∂z2

)
∂2

∂t2
+N2 ∂2

∂x2

]
w′ = 0. (2.247)

Seeking solutions of the formw′ = Re W exp[i(kx+mz−ωt)] (where Re denotes the real
part) yields the dispersion relationship for gravity waves:

ω2 = k2N2

k2 +m2
. (2.248)



2.10 Gravity Waves 99

0 1 2 3 4
0

0.5

1

Scaled wavenumber (k/m)

S
ca

le
d 

F
re

qu
en

cy
 (ω

/N
) Fig. 2.8 Scaled frequency, ω/N,

plotted as a function of scaled
horizontal wavenumber, k/m, us-
ing the full dispersion relation of
(2.248) (solid line, asymptoting to
unit value for large k/m) and with
the hydrostatic dispersion relation
(2.252) (dashed line, tending to ∞
for large k/m).

The frequency (see Fig. 2.8) is thus always less than N , approaching N for small horizontal
scales, k � m. If we neglect pressure perturbations, as in the parcel argument, then the
two equations,

∂w′

∂t
= b′, ∂b′

∂t
+w′N2 = 0, (2.249)

form a closed set, and giveω2 = N2.
If the basic state density increases with height then N2 < 0 and we expect this state to

be unstable. Indeed, the disturbance grows exponentially according to exp(σt) where

σ = iω = ±kÑ
(k2 +m2)1/2

, (2.250)

where Ñ2 = −N2. Most convective activity in the ocean and atmosphere is, ultimately,
related to an instability of this form, although of course there are many complicating issues
— water vapour in the atmosphere, salt in the ocean, the effects of rotation and so forth.

Hydrostatic gravity waves and convection

Let us now suppose that the fluid satisfies the hydrostatic Boussinesq equations. The lin-
earized two-dimensional equations of motion become

∂u′

∂t
= −∂φ

′

∂x
, 0 = −∂φ

′

∂z
+ b′, (2.251a)

∂u′

∂x
+ ∂w

′

∂z
= 0,

∂b′

∂t
+w′N2 = 0, (2.251b)

where these are the horizontal and vertical momentum equations, the mass continuity equa-
tion and the thermodynamic equation respectively. A little algebra gives the dispersion
relation,

ω2 = k
2N2

m2
. (2.252)

The frequency and, if N2 is negative the growth rate, is unbounded for as k/m → ∞, and
the hydrostatic approximation thus has quite unphysical behaviour for small horizontal
scales (see also problem 2.11).11
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Fig. 2.10 An idealized boundary layer. The val-
ues of a field, such as velocity, U , may vary
rapidly in a boundary in order to satisfy the
boundary conditions at a rigid surface. The pa-
rameter δ is a measure of the boundary layer
thickness, and H is a typical scale of variation
away from the boundary.

2.12 THE EKMAN LAYER

In the final topic of this chapter, we return to geostrophic flow and consider the effects
of friction. The fluid fields in the interior of a domain are often set by different physical
processes than those occurring at a boundary, and consequently often change rapidly in a
thin boundary layer, as in Fig. 2.10. Such boundary layers nearly always involve one or both
of viscosity and diffusion, because these appear in the terms of highest differential order in
the equations of motion, and so are responsible for the number and type of boundary con-
ditions that the equations must satisfy — for example, the presence of molecular viscosity
leads to the condition that the tangential flow (as well as the normal flow) must vanish at a
rigid surface.

In many boundary layers in non-rotating flow the dominant balance in the momentum
equation is between the advective and viscous terms. In some contrast, in large-scale at-
mospheric and oceanic flow the effects of rotation are large, and this results in a boundary
layer, known as the Ekman layer, in which the dominant balance is between Coriolis and
frictional or stress terms.12 Now, the direct effects of molecular viscosity and diffusion are
nearly always negligible at distances more than a few millimetres away from a solid bound-
ary, but it is inconceivable that the entire boundary layer between the free atmosphere (or
free ocean) and the surface is only a few millimetres thick. Rather, in practice a balance
occurs between the Coriolis terms and the forces due to the stress generated by small-scale
turbulent motion, and this gives rise to a boundary layer that has a typical depth of a few
tens to several hundreds of metres. Because the stress arises from the turbulence we cannot
with confidence determine its precise form; thus, we should try to determine what general
properties Ekman layers may have that are independent of the precise form of the friction.

The atmospheric Ekman layer occurs near the ground, and the stress at the ground itself
is due to the surface wind (and its vertical variation). In the ocean the main Ekman layer
is near the surface, and the stress at ocean surface is largely due to the presence of the
overlying wind. There is also a weak Ekman layer at the bottom of the ocean, analogous to
the atmospheric Ekman layer. To analyse all these layers, let us assume the following.

? The Ekman layer is Boussinesq. This is a very good assumption for the ocean, and a
reasonable one for the atmosphere if the boundary layer is not too deep.



Part II

INSTABILITIES, WAVE–MEAN FLOW

INTERACTION AND TURBULENCE



Oh brave new world, That has such people in’t!

William Shakespeare, The Tempest, c. 1611.

CHAPTER

NINE

Geostrophic Turbulence and Baroclinic Eddies

G
EOSTROPHIC TURBULENCE is turbulence in flows that are stably stratified and in near-
geostrophic balance. Like any problem in turbulence it is difficult, and a real ‘so-
lution’ — meaning an accurate, informative statement about average states, with-

out computation of the detailed evolution — may be out of our reach, and may not ex-
ist. Nevertheless, and ironically, it is sometimes easier to say something interesting about
geostrophic turbulence than about incompressible isotropic two- or three-dimensional tur-
bulence. In the latter class of problems there is nothing else to understand other than
the problem of turbulence itself; on the other hand, rotation and stratification give one
something else to grasp, a nettle though it may be, and it becomes possible to address geo-
physically interesting phenomena without having to solve the whole turbulence problem.
Furthermore, in inhomogeneous geostrophic turbulence, asking questions about the mean
fields is meaningful and useful, whereas this is trivial in isotropic turbulence.

Geostrophic turbulence is not restricted to quasi-geostrophic flow; indeed, the large
scale turbulence of the Earth’s ocean and atmosphere is sometimes simply called ‘macro-
turbulence’. Nevertheless, the quasi-geostrophic equations retain advective nonlinearity in
the vorticity equation, and they capture the constraining effects of rotation and stratifica-
tion that are so important in geophysical flows in a simple and direct way; for these reasons
the quasi-geostrophic equations will be our main tool. Let us consider the effects of rotation
first, then stratification.

9.1 EFFECTS OF DIFFERENTIAL ROTATION IN TWO-DIMENSIONAL TURBULENCE

In the limit of motion of a scale much shorter than the deformation radius, and with no
topography, the quasi-geostrophic potential vorticity equation, (5.118), reduces to the two-

377
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dimensional equation,
Dq
Dt

= 0, (9.1)

where q = ζ + f . This is the perhaps the simplest equation with which to study the effects
of rotation on turbulence. Suppose first that the Coriolis parameter is constant, so that
f = f0. Then (9.1) becomes simply the two-dimensional vorticity equation

Dζ
Dt

= 0. (9.2)

Thus constant rotation has no effect on purely two-dimensional motion. Flow that is already
two-dimensional — flow on a soap film, for example — is unaffected by rotation. (In the
ocean and atmosphere, or in a rotating tank, it is of course the effects of rotation that lead
to the flow being quasi-two dimensional in the first instance.)

Suppose, though, that the Coriolis parameter is variable, as in f = f0 + βy . Then we
have

D

Dt
(ζ + βy) = 0 or

Dζ
Dt

+ βv = 0. (9.3a,b)

If the asymptotically dominant term in these equations is the one involving β, then we
obtain v = 0. Put another way, if β is very large, then the meridional flow v must be
correspondingly small to ensure that βv is bounded. Any flow must then be predominantly
zonal. This constraint may be interpreted as a consequence of angular momentum and
energy conservation as follows. A ring of fluid encircling the Earth at a velocity u has an
angular momentum per unit mass a cosθ(u +Ωa cosθ), where θ is the latitude and a is
the radius of the Earth. Moving this ring of air polewards (i.e., giving it a meridional velocity)
while conserving its angular momentum requires that its zonal velocity and hence energy
must increase. Unless there is a source for that energy the flow is constrained to remain
zonal.

9.1.1 The wave–turbulence cross-over

Scaling

Let us now consider how turbulent flow might interact with Rossby waves. We write (9.1) in
full as

∂ζ
∂t

+ u · ∇ζ + βv = 0. (9.4)

If ζ ∼ U/L and if t ∼ T then the respective terms in this equation scale as

U
LT

U2

L2
βU. (9.5)

How time scales (i.e., advectively or with a Rossby wave frequency scaling) is determined
by which of the other two terms dominates, and this in turn is scale dependent. For large
scales the β-term will be dominant, and at smaller scales the advective term is dominant.
The cross-over scale, denoted LR , is called the Rhines scale and is given by1

LR ∼
√
U
β
. (9.6)
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The U in (9.6) should be interpreted as the root-mean-square velocity at the energy contain-
ing scales, not a mean or translational velocity. (We will refer to the specific scale

√
U/β as

the Rhines scale, and more general scales involving a balance between nonlinearity and β,
discussed below, as the β-scale, and denote them Lβ.)

This is not a unique way to arrive at a β-scale, since we have chosen the length scale
that connects vorticity to velocity to also be the β-scale, and it is by no means clear a priori
that this should be so. If the two scales are different, the three terms in (9.4) scale as

Z
T

:
UZ
L

: βU, (9.7)

respectively, where Z is the scaling for vorticity [i.e., ζ = O(Z)]. Equating the second and
third terms gives the scale

LβZ =
Z
β
. (9.8)

Nevertheless, (9.6) and (9.8) both indicate that at some large scale Rossby waves are likely
to dominate whereas at small scales advection, and turbulence, dominates.

Another heuristic way to derive (9.6) is by a direct consideration of time scales. Ignoring
anisotropy, Rossby wave frequency is β/k and an inverse advective time scale is Uk, where
k is the wavenumber. Equating these two gives an equation for the Rhines wavenumber

kR ∼
√
β
U
. (9.9)

This equation is the inverse of (9.6), but note that factors of order unity cannot be revealed
by simple scaling arguments such as these. The cross-over between waves and turbulence
is reasonably sharp, as indicated in Fig. 9.1.

Turbulent phenomenology

Let us now try to go beyond elementary scaling arguments and examine wave–turbulence
cross-over using the phenomenology of two-dimensional turbulence. We will suppose that
the fluid is stirred at some well-defined scale kf , producing an energy input ε. Then (as-
suming no energy is lost to smaller scales) energy cascades to large scales at that same
rate. At some scale, the β-term in the vorticity equation will start to make its presence felt.
By analogy with the procedure for finding the viscous dissipation scale in turbulence, we
can find the scale at which linear Rossby waves dominate by equating the inverse of the
turbulent eddy turnover time to the Rossby wave frequency. The eddy-turnover time is

τk = ε−1/3k−2/3, (9.10)

and equating this to the inverse Rossby wave frequency k/β gives the β-wavenumber and
its inverse, the β-scale:

kβ ∼
(
β3

ε

)1/5

, Lβ ∼
(
ε
β3

)1/5

. (9.11a,b)

In a real fluid these expressions are harder to evaluate than (9.9), since it is generally much
easier to measure velocities than energy transfer rates, or even vorticity. On the other hand,
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Fig. 9.1 Three estimates of the wave–turbulence cross-over, in wavenumber space.
The solid curve is the frequency of Rossby waves, proportional to β/k. The other
three curves are various estimates of the inverse turbulence time scale, or ‘turbulence
frequency’. These are the turbulent eddy transfer rate, proportional to εk2/3 in a
k−5/3 spectrum; the simple estimate Uk where U is an root-mean-squared velocity;
and the mean vorticity, which is constant. Where the Rossby wave frequency is larger
(smaller) than the turbulent frequency, i.e., at large (small) scales, Rossby waves
(turbulence) dominate the dynamics.

(9.11) is perhaps more satisfactory from the point of view of turbulence, and ε may be de-
termined by processes largely independent of β, whereas the magnitude of the eddies at
the energy containing scales is likely to be a function of β. We also note that the scale given
by (9.11b) is not necessarily the energy-containing scale, and may in principle differ consid-
erably from the scale given by (9.9). This is because the inverse cascade is not necessarily
halted at the scale (9.11b) — this is just scale at which Rossby waves become important.
Energy may continue to cascade to larger scales, albeit anisotropically as discussed below,
and so the energy containing scale may be larger.

9.1.2 Generation of zonal flows and jets

None of the effects discussed so far takes into account the anisotropy inherent in Rossby
waves, and such anisotropy can give rise to predominantly zonal flows and jets. To under-
stand this, let us first note that energy transfer will be relatively inefficient at those scales
where linear Rossby waves dominate the dynamics. But the wave–turbulence boundary is
not isotropic; the Rossby wave frequency is quite anisotropic, being given by

ω = − βkx

kx2 + ky2 . (9.12)
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Fig. 9.2 The anisotropic wave–
turbulence boundary kβ, in wave-
vector space calculated by equating
the turbulent eddy transfer rate, pro-
portional to k2/3 in a k−5/3 spectrum,
to the Rossby wave frequency βkx/k2,
as in (9.14). Within the dumbbell
Rossby waves dominate and energy
transfer is inhibited. The inverse
cascade plus Rossby waves thus leads
to a generation of zonal flow.

If, albeit a little crudely, we suppose that the turbulent part of the flow remains isotropic,
the wave–turbulence boundary is then given by equating the inverse of (9.10) with (9.12);
that is solution of

ε1/3k2/3 = βk
x

k2
, (9.13)

where k is the isotropic wavenumber. Solving this gives expressions for the x- and y-
wavenumber components of the wave–turbulence boundary, namely

kxβ =
(
β3

ε

)1/5

cos8/5 θ, kyβ =
(
β3

ε

)1/5

sinθ cos3/5 θ, (9.14)

where the polar coordinate is parameterized by the angle θ = tan−1(ky/kx). This rather
uninformative-looking formula is illustrated in Fig. 9.2. (Slight variations on this theme are
produced by using different expressions for the turbulence time scale; see problem 9.1.)

What occurs physically? The region inside the dumbbell shapes in Fig. 9.2 is dominated
by Rossby waves, where the natural frequency of the oscillation is higher than the turbulent
frequency. If the flow is stirred at a wavenumber higher than this the energy will cascade
to larger scales, but because of the frequency mismatch the turbulent flow will be unable to
efficiently excite modes within the dumbbell. Nevertheless, there is still a natural tendency
of the energy to seek the gravest mode, and it will do this by cascading toward the kx = 0
axis; that is, toward zonal flow. Thus, the combination of Rossby waves and turbulence will
lead to the formation of zonal flow and, potentially, zonal jets.3

Figure 9.3 illustrates this mechanism; it shows the freely evolving (unforced, inviscid)
energy spectrum in a simulation on a β–plane, with an initially isotropic spectrum. The
energy implodes, cascading to larger scales but avoiding the region inside the dumbbell
and piling up at kx = 0. In physical space this mechanism manifests itself by the forma-
tion of zonally elongated structures and jets, in both freely-decaying and forced-dissipative
simulations (Fig. 9.4 and Fig. 9.5).



382 Chapter 9. Geostrophic Turbulence and Baroclinic Eddies
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Fig. 9.3 Evolution of the energy spectrum in a freely evolving two-dimensional simu-
lation on the β-plane. The panels show contours of energy in wavenumber (kx , ky)
space at successive times. The initial spectrum is isotropic. The energy ‘implodes’,
but its passage to large scales is impeded by the β-effect, and second and third pan-
els show the spectrum at later times, illustrating the dumbbell predicted by (9.14)
and Fig. 9.2.2

9.1.3 † Joint effect of β and friction

The β term does not remove energy from a fluid. Thus, if energy is being added to a fluid at
some small scales, and the energy is cascading to larger scales, then the β-effect does not
of itself halt the inverse cascade, it merely deflects the cascade such that the flow becomes
more zonal. Suppose that the fluid obeys the barotropic vorticity equation,

∂ζ
∂t

+ J(ψ,ζ)+ β∂ψ
∂x

= F − rζ + ν∇2ζ, (9.15)

where the viscosity, ν , is small and acts only to remove enstrophy, and not energy, at very
small scales. The forcing, F , supplies energy at a rate ε and this is cascaded upscale and
removed by the linear drag term −rζ, where the drag coefficient r is a constant. If the fric-
tion is sufficiently large, then the energy is removed before it feels the effect of β. A scaling
of (9.15) suggests that the relative importance of the β-effect relative to friction is param-
eterized by the non-dimensional number βL/r , where L is the length scale of the energy
containing modes. This length scale is not known a priori, and a more predictive measure
of the importance of friction and β is obtained by comparing the frictional wavenumber
(8.74), and the β-wavenumber, (9.11). The ratio of these scales, γ, is given by

γ =
(
βε1/2

r 5/2

)3/5

. (9.16)

When γ is large the β-effect will be felt, but when γ is small frictional effects will dominate
at large scales.

Even if γ is large, then frictional effects must still be important somewhere, in order
that energy may be removed. Forming an energy equation from (9.15) by multiplying by
−ψ and spatially integrating (and neglecting viscosity) we find the energy balance

ε = − 1

A

∫
A
ψF dA = r

A

∫
A
(∇ψ)2 dA = 2rE, (9.17)
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Fig. 9.5 Left: Grey-scale image of zonally averaged zonal velocity (u) as a function of
time and latitude (Y), produced in a simulation forced around wavenumber 80 and
with kβ =

√
β/U ≈ 10 (in a square domain of side 2π). Right: Values of ∂2u/∂y2 as

a function of latitude, late in the integration. Jets form very quickly from the random
initial conditions, and are subsequently quite steady.4

where E is the average energy of the fluid per unit mass. Using (9.6) with U =
√

2E, where
E is obtained from (9.17), we obtain the Rhines scale

LR =
(
ε
rβ2

)1/4

. (9.18)

What do the two scales, (9.11b) and (9.18), represent? The first is the scale at which the
β-effect is first felt by the inverse cascade, and this parameterizes the overall size of the
dumbbell of Fig. 9.2. It is this scale that is most relevant for large-scale meridional mixing,
and so for the meridional heat transport in the atmosphere. But if the inverse cascade
continues past this scale, especially in the zonal direction, then (9.18) may characterize the
largest scale reached by the inverse cascade, and so the meridional scale of the jets.5

9.2 STRATIFIED GEOSTROPHIC TURBULENCE

9.2.1 An analogue to two-dimensional flow

Now let us consider stratified effects in a simple setting, using the quasi-geostrophic equa-
tions with constant Coriolis parameter and constant stratification.6 The (dimensional) un-
forced and inviscid governing equation may then be written as

Dq
Dt

= 0, q = ∇2ψ+ Pr2 ∂2ψ
∂z2

, (9.19a)

where Pr = f0/N is the Prandtl ratio (and Pr/H is the inverse of the deformation radius)
and D/Dt = ∂/∂t +u ·∇ is the two-dimensional material derivative. The vertical boundary



Part III

LARGE-SCALE ATMOSPHERIC

CIRCULATION



I think the causes of the general trade-winds have not been fully explained
by any of those who have wrote on that subject. . . That the action of the
Sun is the original cause of these Winds, I think all are agreed.

George Hadley, Concerning the Cause of the General Trade Winds, 1735.

CHAPTER

ELEVEN

The Overturning Circulation: Hadley and Ferrel

Cells

I
N THIS CHAPTER AND THE TWO FOLLOWING we discuss the large-scale circulation, and in par-
ticular the general circulation, of the atmosphere, this being the mean flow on scales
from the synoptic eddy scale — about 1000 km — to the global scale. In this chapter we

focus on the dynamics of the Hadley Cell and then, rather descriptively, on the mid-latitude
overturning cell or the Ferrel Cell. The latter provides a starting point for chapter 12 which
discusses the dynamics of the extratropical zonally averaged circulation. Finally, in chapter
13, we consider the deviations from zonal symmetry, or more specifically the stationary
wave pattern, and the stratosphere. In these three chapters we will use many of the tools
developed in the previous chapters, but those readers who already have some acquaintance
with geophysical fluid dynamics may simply wish to jump in here.

The atmosphere is a terribly complex system, and we cannot hope to fully explain its
motion as the analytic solution to a small set of equations. Rather, a full understanding of
the atmosphere requires describing it in a consistent way on many levels simultaneously.
One of these levels involves simulating the flow by numerically solving the governing equa-
tions of motion as completely as possible, for example by using a comprehensive General
Circulation Model (GCM). However, such a simulation brings problems of its own, including
the problem of understanding the simulation, and discerning whether it is a good repre-
sentation of reality. Thus, in this chapter and the two following we concentrate on simpler,
more conceptual models. We begin this chapter with a brief observational overview of some
of the pre-eminent large-scale features of the atmosphere, concentrating on the zonally av-
eraged fields.1
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Fig. 11.1 (a) The (approximate) observed net average incoming solar radiation and
outgoing infrared radiation at the top of the atmosphere, as a function of latitude
(plotted on a sine scale). (b) The temperatures associated with these fluxes, calcu-
lated using T = (R/σ)1/4, where R is the solar flux for the radiative equilibrium
temperature and R is the infrared flux for the effective emitting temperature. Thus,
the solid line is an approximate radiative equilibrium temperature

11.1 BASIC FEATURES OF THE ATMOSPHERE

11.1.1 The radiative equilibrium distribution

A gross but informative measure characterizing the atmosphere, and the effects that dy-
namics have on it, is the pole-to-equator temperature distribution. The radiative equilib-
rium temperature is the hypothetical, three-dimensional, temperature field that would ob-
tain if there were no atmospheric or oceanic motion, given the composition and radiative
properties of the atmosphere and surface. The field is a function only of the incoming
solar radiation at the top of the atmosphere, although to evaluate it entails a complicated
calculation, especially as the radiative properties of the atmosphere depend on the amount
of water vapour and cloudiness in the atmosphere. (The distribution of absorbers is usu-
ally taken to be that which obtains in the observed, moving, atmosphere, in order that
the differences between the calculated radiative equilibrium temperature and the observed
temperature are due to fluid motion.)

A much simpler calculation that illustrates the essence of the situation is to first note
that at the top of the atmosphere the globally averaged incoming solar radiation is bal-
anced by the outgoing infrared radiation. If there is no lateral transport of energy in
the atmosphere or ocean then at each latitude the incoming solar radiation will be bal-
anced by the outgoing infrared radiation, and if we parameterize the latter using a single
latitudinally-dependent temperature we will obtain a crude radiative-equilibrium temper-
ature for the atmospheric column at each latitude. Specifically, a black body subject to
a net incoming radiation of S (watts per square metre) has a radiative-equilibrium tem-
perature Trad given by σT 4

rad = S, this being Stefan’s law with Stefan-Boltzmann constant
σ = 5.67× 10−8 W m−2 K−4. Thus, for the Earth, we have, at each latitude,

σT 4
rad = S(ϑ)(1−α), (11.1)

where α is the albedo of the Earth and S(ϑ) is the incoming solar radiation at the top of the
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atmosphere, and its solution is shown in Fig. 11.1. The solid lines in the two panels show
the net solar radiation and the solution to (11.1), Trad; the dashed lines show the observed
outgoing infrared radiative flux, I, and the effective emitting temperature associated with it,
(I/σ)1/4. The emitting temperature does not quantitatively characterize that temperature
at the Earth’s surface, nor at any single level in the atmosphere, because the atmosphere is
not a black body and the outgoing radiation originates from multiple levels. Nevertheless,
the qualitative point is evident: the radiative equilibrium temperature has a much stronger
pole-to-equator gradient than does the effective emitting temperature, indicating that there
is a poleward transport of heat in the atmosphere–ocean system. More detailed calculations
indicate that the atmosphere is further from its radiative equilibrium in winter than sum-
mer, indicating a larger heat transport. The transport occurs because polewards moving air
tends to have a higher static energy (cpT + gz for dry air; in addition there is some energy
transport associated with water vapour evaporation and condensation) than the equator-
wards moving air, most of this movement being associated with the large-scale circulation.
The radiative forcing thus seeks to maintain a pole-to-equator temperature gradient, and
the ensuing circulation seeks to reduce this gradient.

11.1.2 Observed wind and temperature fields

The observed zonally averaged temperature and zonal wind fields are illustrated in Fig. 11.2.
The vertical coordinate is log pressure, multiplied by a constant factor H = RT0/g =
7.5 km, so that the ordinate is similar to height in kilometres. [In an isothermal hydrostatic
atmosphere (RT0/g)d lnp = −dz, and the value of H chosen corresponds to T0 = 256 K.]
To a good approximation temperature and zonal wind are related by thermal wind balance,
which in pressure coordinates is

f
∂u
∂p

= R
p
∂T
∂y
. (11.2)

In the lowest several kilometres of the atmosphere temperature falls almost monotonically
with latitude and height, and this region is called the troposphere. The temperature in the
lower troposphere in fact varies more rapidly with latitude than does the effective emitting
temperature, TE , the latter being more characteristic of the temperature in the mid-to-
upper troposphere. The meridional temperature gradient is much larger in winter than
summer, because in winter high latitudes receive virtually no direct heating from the Sun.
It is also strongest at the edge of the subtropics, and here it is associated with a zonal
jet, particularly strong in winter. There is no need to ‘drive’ this wind with any kind of
convergent momentum fluxes: given the temperature, the flow is a consequence of thermal
wind balance, and to the extent that the upper troposphere is relatively frictionless there
is no need to maintain it against dissipation. Of course just as the radiative-equilibrium
temperature gradient is much larger than that observed, so the zonal wind shear associated
with it is much larger than that observed. Thus, the overall effect of the atmospheric
and oceanic circulation, and in particular of the turbulent circulation of the mid-latitude
atmosphere, is to reduce the amplitude of the vertical shear of the eastward flow by way of
a poleward heat transport. Observations indicate that about two-thirds of this transport is
effected by the atmosphere, and about a third by the ocean, more in low latitudes.2

Above the troposphere is the stratosphere, and here temperature typically increases
with height. The boundary between the two regions is called the tropopause, and this varies
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Fig. 11.2 (a) Annual mean, zonally averaged zonal wind (heavy contours and shading)
and the zonally averaged temperature (lighter contours). (b) Annual mean, zonally
averaged zonal winds at the surface. (c) and (d) Same as (a) and (b), except for
northern hemisphere winter (DJF). The wind contours are at intervals of 5 m s−1 with
shading for eastward winds above 20 m s−1 and for all westward winds, and the
temperature contours are labelled. The ordinate of (a) and (c) is Z = −H log(p/pR),
where pR is a constant, with scale height H = 7.5 km.
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Summer                                                                              Winter

Fig. 11.3 The observed, zonally averaged, meridional overturning circulation of the
atmosphere, in units of kg s−1, averaged over December–January–February (DJF). In
each hemisphere note the presence of a direct Hadley Cell (HW and HS in winter and
summer) with rising motion near the equator, descending motion in the subtropics,
and an indirect Ferrel Cell (FW and FS) at mid-latitudes. There are also hints of a weak
direct cell at high latitudes. The winter Hadley Cell is far stronger than the summer
one.

in height from about 16 km in the tropics to about 8 km in polar regions. We consider the
maintenance of this stratification in section 12.5.

The surface winds typically have, going from the equator to the pole, an E–W–E (easterly–
westerly–easterly) pattern, although the polar easterlies are weak and barely present in the
Northern Hemisphere. (Meteorologists use ‘westerly’ to denote winds from the west, that
is eastward winds; similarly ‘easterlies’ are westward winds. We will use both ‘westerly’
and ‘eastward’, and both ‘easterly’ and ‘westward’, and the reader should be comfortable
with all these terms.) In a given hemisphere, the surface winds are stronger in winter than
summer, and they are also consistently stronger in the Southern Hemisphere than in the
Northern Hemisphere, because in the former the surface drag is weaker because of the rel-
ative lack of continental land masses and topography. The surface winds are not explained
by thermal wind balance. Indeed, unlike the upper level winds, they must be maintained
against the dissipating effects of friction, and this implies a momentum convergence into
regions of surface westerlies and a divergence into regions of surface easterlies. Typically,
the maxima in the eastward surface winds are in mid-latitudes and somewhat polewards of
the subtropical maxima in the upper-level westerlies and at latitudes where the zonal flow
is a little more constant with height. The mechanisms of the momentum transport in the
mid-latitudes and the maintenance of the surface westerly winds are the topics of section
12.1.
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Some Features of the Large-scale Atmospheric Circulation

From Figures 11.1–11.3 we see or infer the following.

? A pole–equator temperature gradient that is much smaller than the radiative
equilibrium gradient.

? A troposphere, in which temperature generally falls with height, above which
lies the stratosphere, in which temperature increases with height. The two re-
gions are separated by a tropopause, which varies in height from about 16 km
at the equator to about 6 km at the pole.

? A monotonically decreasing temperature from equator to pole in the tropo-
sphere, but a weakening and sometimes reversal of this above the tropopause.

? A westerly (i.e., eastward) tropospheric jet. The time and zonally averaged
jet is a maximum at the edge or just polewards of the subtropics, where it
is associated with a strong meridional temperature gradient. In mid-latitudes
the jet has a stronger barotropic component.

? An E–W–E (easterlies–westerlies–easterlies) surface wind distribution. The lat-
itude of the maximum in the surface westerlies is in mid-latitudes, where the
zonally averaged flow is more barotropic.

11.1.3 Meridional overturning circulation

The observed (Eulerian) zonally averaged meridional overturning circulation is illustrated
in Fig. 11.3. The figure shows a streamfunction, Ψ for the vertical and meridional velocities
such that, in the pressure coordinates used in the figure,

∂Ψ
∂y

=ω, ∂Ψ
∂p

= −v. (11.3)

where the overbar indicates a zonal average. In each hemisphere there is rising motion near
the equator and sinking in the subtropics, and this circulation is known as the Hadley Cell.3

The Hadley Cell is a thermally direct cell (i.e., the warmer fluid rises, the colder fluid sinks),
is much stronger in the winter hemisphere, and extends to about 30°. In mid-latitudes
the sense of the overturning circulation is apparently reversed, with rising motion in the
high-mid-latitudes, at around 60° and sinking in the subtropics, and this is known as the
Ferrel Cell. However, as with most pictures of averaged streamlines in unsteady flow, this
gives a misleading impression as to the actual material flow of parcels of air because of
the presence of eddying motion, and we discuss this in the next chapter. At low latitudes
the circulation is more nearly zonally symmetric and the picture does give a qualitatively
correct representation of the actual flow. At high latitudes there is again a thermally direct
cell (although it is weak and not always present), and thus the atmosphere is often referred
to as having a three-celled structure.
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11.1.4 Summary

Some of the main features of the zonally averaged circulation are summarized in the shaded
box on the preceding page. We emphasize that the zonally averaged circulation is not syn-
onymous with a zonally symmetric circulation, and the mid-latitude circulation is highly
asymmetric. Any model of the mid-latitudes that did not take into account the zonal asym-
metries in the circulation — of which the weather is the main manifestation — would be
seriously in error. This was first explicitly realized in the 1920s, and taking into account
such asymmetries is the main task of the dynamical meteorology of the mid-latitudes, and
is the subject of the next chapter. On the other hand, the large-scale tropical circulation
of the atmosphere is to a large degree zonally symmetric or nearly so, and although mon-
soonal circulations and the Walker circulation (a cell with rising air in the Eastern Pacific
and descending motion in the Western Pacific) are zonally asymmetric, they are also rela-
tively weaker than typical mid-latitude weather systems. Indeed the boundary between the
tropics and mid-latitude may be usefully defined by the latitude at which such zonal asym-
metries become dynamically important on the large scale and this boundary, at about 30°
on average, roughly coincides with the latitude at which the mean meridional overturning
circulation vanishes. We begin our dynamical description with a study of the low-latitude
zonally symmetric atmospheric circulation.

11.2 A STEADY MODEL OF THE HADLEY CELL

Ceci n’est pas une pipe.

René Magritte (1898–1967), title of painting.

11.2.1 Assumptions

Let us try to construct a zonally symmetric model of the Hadley Cell,4 recognizing that
such a model is likely applicable mainly to the tropical atmosphere, this being more zonally
symmetric than the mid-latitudes. We will suppose that heating is maximum at the equator,
and our intuitive picture, drawing on the observed flow of Fig. 11.3, is of air rising at the
equator and moving polewards at some height H, descending at some latitude ϑH , and
returning equatorwards near the surface. We will make three major assumptions:

(i) that the circulation is steady;

(ii) that the polewards moving air conserves its axial angular momentum, whereas the
zonal flow associated with the near-surface, equatorwards moving flow is frictionally
retarded and is weak;

(iii) that the circulation is in thermal wind balance.

We also assume the model is symmetric about the equator (an assumption we relax in
section 11.4). These are all reasonable assumptions, but they cannot be rigorously justified;
in other words, we are constructing a model of the Hadley Cell, schematically illustrated in
Fig. 11.4. The model defines a limiting case — steady, inviscid, zonally-symmetric flow —
that cannot be expected to describe the atmosphere quantitatively, but that can be analysed
fairly completely. Another limiting case, in which eddies play a significant role, is described
in section 11.5. The real atmosphere may defy such simple characterizations, but the two
limits provide invaluable benchmarks of understanding.
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Fig. 11.4 A simple model of the Hadley Cell. Rising air near the equator moves
polewards near the tropopause, descending in the subtropics and returning near the
surface. The polewards moving air conserves its axial angular momentum, leading to
a zonal flow that increases away from the equator. By the thermal wind relation the
temperature of the air falls as it moves polewards, and to satisfy the thermodynamic
budget it sinks in the subtropics. The return flow at the surface is frictionally retarded
and small.

11.2.2 Dynamics

We now try to determine the strength and poleward extent of the Hadley circulation in our
steady model. For simplicity we will work with a Boussinesq atmosphere, but this is not an
essential aspect. We will first derive the conditions under which conservation on angular
momentum will hold, and then determine the consequences of that.

The zonally averaged zonal momentum equation may be easily derived from (2.50a)
and/or (2.62) and in the absence of friction it is

∂u
∂t

− (f + ζ)v +w∂u
∂z

= − 1

cos2 ϑ
∂
∂ϑ
(cos2 ϑu′v′)− ∂u

′w′

∂z
, (11.4)

where ζ = −(a cosϑ)−1∂y(u cosϑ) and the overbars represent zonal averages. If we ne-
glect the vertical advection and the eddy terms on the right-hand side, then a steady solu-
tion, if it exists, obeys

(f + ζ)v = 0. (11.5)

Presuming that the meridional flow v is non-zero (an issue we address in section 11.2.8)
then f + ζ = 0, or equivalently

2Ω sinϑ = 1

a
∂u
∂ϑ

− u tanϑ
a

. (11.6)

At the equator we shall assume that u = 0, because here parcels have risen from the surface
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No fairer destiny [has] any physical theory, than that it should of itself
point out the way to the introduction of a more comprehensive theory, in
which it lives on as a limiting case.

Albert Einstein, Relativity, the Special and the General Theory, 1916.

CHAPTER

SIXTEEN

The Wind- and Buoyancy-Driven Ocean

Circulation

I
N THIS CHAPTER we try to understand the combined effect of wind and buoyancy forcing
in setting the three-dimensional structure of the ocean. There are three main topics we
will consider.

(i) The main thermocline, the region in the upper 1 km or so of the ocean where density
and temperature change most rapidly.

(ii) The ‘wind-driven’ overturning circulation. That is, we look into whether and how the
ocean might maintain a deep overturning circulation that owes its existence to the
effects of wind at the surface, as well as buoyancy forcing at the surface, and that
persists even as the diapycnal diffusivity in the ocean interior goes to zero.

(iii) The circulation of the flow in a channel, as a model of the Antarctic Circumpolar Cur-
rent (ACC).

16.1 THE MAIN THERMOCLINE: AN INTRODUCTION

In the previous chapter we saw that a fluid that is differentially heated from above will de-
velop both an overturning circulation and a region near the surface where the temperature
changes rapidly. To examine this in more detail, we consider the circulation in a closed, sin-
gle hemispheric basin, and again suppose that there is a net surface heating at low latitudes
and a net cooling at high latitudes that maintains a meridional temperature gradient at the
surface. We presume, ab initio, that there is a single overturning cell, with water rising at
low latitudes before returning to polar regions, illustrated schematically in Fig. 16.1.

At lower latitudes the surface water is warmer than the cold water in the abyss. Thus

667
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Equator                                                                      Pole

Thermocline

z

Ocean surface

Fig. 16.1 Cartoon of a single-celled meridional overturning circulation, with a wall at
the equator. Sinking is concentrated at high latitudes and upwelling spread out over
lower latitudes. The thermocline is the boundary between the cold abyssal waters,
with polar origins, and the warmer near-surface subtropical water. Wind forcing in
the subtropical gyre mechanically pushes the warm water down, increasing the depth
of the thermocline.

there must be a vertical temperature gradient everywhere except possibly at the highest
latitudes where the cold dense water sinks. This temperature gradient is called the thermo-
cline, and is illustrated in Fig. 16.2. In purely buoyancy-driven flows the thickness of the
thermocline is determined by way of an advective–diffusive balance, and proportional to
some power of the thermal diffusivity as we considered in section 15.7. Let us revisit this
issue, first by way of a simple kinematic model.

16.1.1 A simple kinematic model

The fact that cold water with polar origins upwells into a region of warmer water suggests
that we consider the simple one-dimensional advective–diffusive balance,

w
∂T
∂z

= κ ∂
2T
∂z2

, (16.1)

where w is the vertical velocity, κ is a diffusivity and T is temperature. In mid-latitudes,
where this might hold, w is positive and the equation represents a balance between the
upwelling of cold water and the downward diffusion of heat. Ifw and κ are given constants,
and if T is specified at the top (T = TT at z = 0) and if ∂T/∂z = 0 at great depth (z = −∞)
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Fig. 16.2 Sections of potential density (σθ) in the North Atlantic. Upper panel: merid-
ional section at 53° W, from 5° N to 45° N, across the subtropical gyre. Lower panel:
zonal section at 36° N, from about 75° W to 10° W. A front is associated with the
western boundary current and its departure from the coast near 40° N. In the upper
northwestern region of the subtropical thermocline there is a region of low stratifi-
cation known as MODE water: isopycnals above this outcrop in the subtropical gyre
and are ‘ventilated’; isopycnals below the MODE water outcrop in the subpolar gyre
or ACC.1
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then the temperature falls exponentially away the surface according to

T = (TT − TB) ewz/κ + TB , (16.2)

where TB is a constant. This expression cannot be used to estimate how the thermocline
depth scales with either w or κ, because the magnitude of the overturning circulation
depends on κ (section 15.7). However, it is reasonable to see if the observed ocean is
broadly consistent with this expression. The diffusivity κ can be measured; it is an eddy
diffusivity, maintained by small-scale turbulence, and measurements produce values that
range between 10−5 m2 s−1 in the main thermocline and 10−4 m2 s−1 in abyssal regions over
rough topography and in and near continental margins, with still higher values locally.2

The vertical velocity is too small to be measured directly, but various estimates based on
deep water production suggest a value of about 10−7 m s−1. Using this and the smaller
value of κ in (16.2) gives an e-folding vertical scale, κ/w , of just 100 m, beneath which the
stratification is predicted to be very small (i.e., nearly uniform potential density). Using
the larger value of κ increases the vertical scale to 1000 m, which is probably closer to the
observed value for the total thickness of the thermocline (look at Fig. 16.2), but using such
a large value of κ in the main thermocline is not supported by the observations. Similarly,
the deep stratification of the ocean is rather larger than that given by (16.1), except with
values of diffusivity on the large side of those observed.3 Thus, there are two conclusions
to be drawn.

(i) The observed thickness of the thermocline is somewhat larger than what one might
infer from observed values of the diffusivity and overturning circulation.

(ii) The observed deep stratification is somewhat larger than what one might infer from
the advective–diffusive balance (16.1) with observed values of diffusivity and overturn-
ing circulation.

Of course the model itself, (16.1), is overly simple but these conclusions suggest that
additional physical factors may play a role in thermocline dynamics. Mechanical forcing,
and in particular the wind, is one such: the wind-stress curl forces water to converge in
the subtropical Ekman layer, thereby forcing relatively warm water to downwell and meet
the upwelling colder abyssal water at some finite depth, thus deepening the thermocline
from its purely diffusive value. Indeed, in so far as we can separate the two effects of wind
and diffusion, we can say that the strength of the wind influences the depth at which the
thermocline occurs, whereas the strength of the diffusivity influences the thickness of the
thermocline. The influence of the wind on the abyssal circulation is not quite as direct, but
we will find in section 16.5 that it will enable both a circulation and deep stratification to
persist even in the absence of diffusion.

16.2 SCALING AND SIMPLE DYNAMICS OF THE MAIN THERMOCLINE

We now begin to consider the dynamics that produce an overturning circulation and a
thermocline. The Rossby number of the large-scale circulation is small and the scale of the
motion large, and the flow obeys the planetary-geostrophic equations:

f × u = −∇φ, ∂φ
∂z

= b, (16.3a,b)
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∇ · v = 0,
Db
Dt

= κ ∂
2b
∂z2

. (16.4a,b)

We suppose that these equations hold below an Ekman layer, so that the effects of a wind
stress may be included by specifying a vertical velocity at the top of the domain. The diffu-
sivity, κ, is, as we noted above, an eddy diffusivity, but since its precise form and magnitude
are uncertain we must proceed with due caution, and a useful practical philosophy is to try
to ignore dissipation and viscosity where possible, and to invoke them only if there is no
other way out. Let us therefore scale the equations in two ways, with and without diffusion;
these scalings will be central to our theory.

16.2.1 An advective scale

As usual we denote (with one or two exceptions) scaling values with capital letters and non-
dimensional values with a hat, so that, for example, u = Uû and u = O(U). Let us ignore
the diffusive term in (16.4b) and try to construct a scaling estimate for the depth of the
wind’s influence.

If there is upwelling (w > 0) from the abyss, and Ekman downwelling (w < 0) at the
surface, there is some depth Da at which w = 0. By cross-differentiating (16.3a) we obtain
βv = −f∇z · u, and combining this with (16.4a) gives the familiar geostrophic vorticity
equation and corresponding scaling

βv = f ∂w
∂z

→ βV = f W
Da
. (16.5)

Here, Da is the unknown depth scale of the motion, L is the horizontal scale of the motion,
which we take as the gyre or basin scale, and V is a horizontal velocity scale. (It is reasonable
to suppose that V ∼ U , where U is the zonal velocity scale, and henceforth we will denote
both by U .) The appropriate vertical velocity to use is that due to Ekman pumping, WE ;
we will assume (and demonstrate later) that this is much larger than the abyssal upwelling
velocity, which in any case is zero by assumption at z = −Da. With this, (16.5) yields the
Sverdrup-balance estimate

U = f
β
WE
Da
. (16.6)

We may determine an appropriate value of U using the thermal wind relation, which
from (16.3) is

f × ∂u
∂z

= −∇b → U
Da

= 1

f
∆b
L
, (16.7)

where ∆b is the scaling value of variations of buoyancy in the horizontal. Assuming the
vertical scales are the same in (16.6) and (16.7) then eliminating U gives

Da = W 1/2
E

(
f 2L
β∆b

)1/2

. (16.8)

[This is essentially the same as the estimate (14.130).] If we relate U and WE using mass
conservation, U/L = WE/Da, instead of using Sverdrup balance, then we write L in place of
f/β and (16.8) becomes Da =

(
WEfL2/∆b

)1/2
, which is not qualitatively different for large
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scales. The important aspect of these equations is that the depth of the wind-influenced re-
gion increases with the magnitude of the wind stress (because WE ∝ curlzτ) and decreases
with the meridional temperature gradient. The former dependence is reasonably intuitive,
and the latter arises because as the temperature gradient increases the associated ther-
mal wind-shear U/Da correspondingly increases. But the horizontal transport (the product
UDa) is fixed by mass conservation; the only way that these two can remain consistent is
for the vertical scale to decrease. Taking WE = 10−6 m s−1, ∆b = g∆ρ/ρ0 = gβT∆T ∼
10−2 m s−2, L = 5000 km and f = 10−4 s−1 gives Da = 500 m. Such a scaling argument can-
not be expected to give more than an estimate of the depth of the wind-influenced region;
nevertheless, because Da is much less than the ocean depth, the estimate does suggest that
the wind-driven circulation is predominantly an upper-ocean phenomenon.

16.2.2 A diffusive scale

The estimate (16.8) cares nothing about the thermodynamic equation; if we do take into
account thermodynamics, with non-zero diffusivity, we recover the model of section 15.7.
Thus, briefly, the scaling follows from advective–diffusive balance in the thermodynamic
equation, the linear geostrophic vorticity equation, and thermal wind balance:

w
∂b
∂z

= κ ∂
2b
∂z2

, βv = f ∂w
∂z
, f

∂u
∂z

= k×∇b, (16.9a,b,c)

with corresponding scales

W
δ
= κ
δ2
, βU = fW

δ
,

U
δ
= ∆b
fL
, (16.10a,b,c)

where δ is the vertical scale. Because there is now one more equation than in the advec-
tive scaling theory we cannot take the vertical velocity as a given, otherwise the equations
would be overdetermined. We therefore take it to be the abyssal upwelling velocity, which
then becomes part of the solution, rather than being imposed. From (16.10) we obtain the
diffusive vertical scale,

δ =
(
κf 2L
β∆b

)1/3

. (16.11)

With κ = 10−5 m2 s−2 and with the other parameters taking the values given following
(16.8), (16.11) gives δ ≈ 150 m and, using (16.10a), W ≈ 10−7 m s−1, which is an order of
magnitude smaller than the Ekman pumping velocity WE .

A wind-influenced diffusive scaling

The scaling above assumes that the length scale over which thermal wind balance holds
is the gyre scale itself. In fact, there is another length scale that is more appropriate, and
this leads to a slightly different scaling for the thickness of the thermocline. To obtain this
scaling, we first note that the depth of the subtropical thermocline is not constant: it shoals
up to the east because of Sverdrup balance, and it may shoal up polewards as the curl of the
wind stress falls (and is zero at the poleward edge of the gyre). Thus, referring to Fig. 16.3,
the appropriate horizontal length scale L̃ is given by
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Fig. 16.3 Scaling the thermocline.
The diagonal lines mark the dif-
fusive thermocline of thickness δ
and depth D(y). The advective
scaling for D(y), i.e., Da, is given
by (16.8), and the diffusive scaling
for δ is given by (16.13).

L̃ = δ L
Da
. (16.12)

This is no longer an externally imposed parameter, but must be determined as part of the
solution. Using L̃ instead of L as the length scale in the thermal wind equation (16.10c)
gives, using (16.8), the modified diffusive scale

δ = κ1/2

(
f 2L

∆bβDa

)1/2

= κ1/2

(
f 2L

∆bβWE

)1/4

. (16.13)

Substituting values of the various parameters results in a thickness of about 100–200 m.
The thermocline thickness now scales as κ1/2. The interpretation of this scale and that of
(16.11) is that the thickness of the thermocline scales as κ1/3 in the absence of a wind stress,
but scales as κ1/2 if a wind stress is present that can provide a finite slope to the base of
the thermocline that is independent of κ, and this is confirmed by numerical simulations.4

From (16.9a) the vertical velocity, and hence the meridional overturning circulation, no
longer scales as κ2/3 but as

W = κ
δ
∝ κ1/2. (16.14)

16.2.3 Summary of the physical picture

What do the vertical scales derived above represent? The wind-influenced scaling, Da, is the
depth to which the directly wind-driven circulation can be expected to penetrate. Thus, over
this depth we can expect to see wind-driven gyres and associated phenomena. At greater
depths lies the abyssal circulation, and this is not wind-driven in the same sense. Now, in
general, the water at the base of the wind-driven layer will not have the same thermody-
namic properties as the upwelling abyssal water — this being cold and dense, whereas the
water in the wind-driven layer is warm and subtropical (look again at Fig. 16.1). The thick-
ness δ characterizes the diffusive transition region between these two water masses and in




